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Abstract

Recent research has focused on feed-forward networks with complex

weights and activation values such as [GK92, Hir92b, Hir92a, Hir93]. This

paper extends this formalism to feed-forward networks with weight and

activation values taken from a Cli�ord algebra (see also [PB92, PB94b]).

A Cli�ord algebra is a multi-dimensional generalization of the complex

numbers and the Quaternions. Essentially a Cli�ord algebra is obtained

by extending vector spaces to allow an associative multiplication compat-

ible with the natural metric on the vector space.

This paper presents an extension of the well known back-error prop-

agation algorithm to Cli�ord valued feed-forward networks, and presents

some experimental results with simple encoder-decoder problems. A dis-

cussion of the di�erence between real and Cli�ord valued networks is also

included. Finally a Universal Approximation similar to the results found

in [HSW89] is proved.

1 Introduction

Most current research into neural networks focuses on the use of real valued

weights and activiation values. More recently the use of complex weights has
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been explored with some success [GK92, Hir92b, Hir92a, Hir93]. Complex num-

bers have been used extensively in engineering and science as a useful analytical

and modeling tools. However they are only one instance of a class of algebras

that can, and have been, extensively used (e.g. the use of Spin algebras in

mathematical physics [CC86, BLJM89]). It is therefore important to try and

extend neural networks to cover not only the complex numbers but the other

forms of multi-dimensional number. In order that that they can be applied to

problem domains that might bene�t from their use. For example it is possible

to represent a colour image as three corresponding arrays of red, green and blue

points respectively, and for three neural networks to operate in parallel on each

image one for each colour. Using a Cli�ord valued system, such as proposed in

this paper, a single neural network could be employed that is able to operate on

three dimensional numbers where each colour is coded as one of the elements

of the number (complex numbers have two elements, quaternions four). Such

a coding would allow the neural network to process the whole colour image

without splitting it into its separate components.

Cli�ord algebra provides a formalism for describing a general class of algebras

that encompass the Complex numbers, the Quaternions and various matrix

algebras. This paper describes how neural networks can be made to operate on

Cli�ord numbers and therefore on any particular number, this then covers the

general case. The paper also gives some insight into implementation issues, and

provides a Universal Approximation proof for Cli�ord Networks.

2 Cli�ord algebras

A Cli�ord algebra is the answer to the question, how can a vector space be

provided with an associative vector-valued multiplication? Given a real vector

space R

p+q

of dimension p + q (the reason using p + q rather than n say, will

become apparent) with basis e

1

; : : : e

p

: : : e

p+q

, the addition of two elements is

well de�ned, for instance:

x =

p+q

X

i=1

x

i

e

i

y =

p+q

X

i=1

y

i

e

i

x+ y =

p+q

X

i=1

(x

i

+ y

i

)e

i

Multiplication is more problematic, neither the scaler product or the vector

product are any use, since the scaler product yields a scaler and the vector

product is limited to three dimensions. Proceeding purely formally, given two

vectors:

x = 4e

1

+ e

2

y = e

2
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For instance, the product would be:

xy = 4e

1

+ 4e

1

e

2

+ e

2

2

The question is then what to do with the extra elements e

1

e

2

and e

2

2

. If the fol-

lowing conventions are adopted (which arise naturally in the context of quadratic

form theory see [Por81]):

e

2

i

= 1 ; i = 1; : : : ; p (1)

e

2

i

= �1 ; i = p+ 1; : : : ; p+ q (2)

e

i

e

j

= �e

j

e

i

; i 6= j (3)

With for 1;� h

1

; < : : :h

r

� n,

e

h

1

� e

h

2

� � � e

h

r

= e

h

1

:::h

r

: (4)

Then all the extra elements can be removed, generating a vector space of di-

mension 2

p+q

with basis elements:

fe

A

= e

h

1

:::h

r

jA = (h

1

; : : : ; h

r

); 1 � h

1

< : : : < h

r

� ng:

For example the Cli�ord algebra generated by R

2

will have the basis:

1; e

1

; e

2

e

12

Multiplication can be expressed more compactly by:

e

A

e

B

= (�1)

#((A\B)nP )

(�1)

p(A;B)

e

A�B

(5)

where P stands for the set 1; : : : p; and #X represents the number of elements

in X,

p(A;B) =

X

j2B

p

0

(A; j); p

0

(A; j) = #fi 2 Aji > jg (6)

and the sets A;B and A�B(the set di�erence of A and B) are ordered in the

natural way. It will be useful in the derivation of the back-propagation algorithm

to de�ne the quantity �

A;B

for two basis elements A and B as:

�

(A;B)

= (�1)

#((A\B)nP )

(�1)

p(A;B)

(7)

It turns out that there is essentially only one way of providing an associative

multiplication to a vector algebra and that is a Cli�ord algebra. The reader can

check that R

0;1

is isomorphic to the complex numbers and R

0;2

is isomorphic

to the Quaternions, for more details again check [Por81]. For applications of

Cli�ord algebras to mathematical physics see [CC86].

In what follows a Cli�ord number will be represented as:

x =

X

A

x

A

e

A

(8)

Where A ranges over all the basis elements in the Cli�ord algebras. The A'th

part of an element is denoted as [x]

A

. In general Cli�ord algebras are non-

commutative.

Cli�ord algebras are used extensively in mathematical physics, because they

can arise as representations of symmetry groups and can aid calculations. For

example they can be used to present a compact form of Maxwell's equations

for the propagation of electro-magnetic waves, or to simplify computational

problems, see [CC86] for examples in other areas of physics.

3



3 Cli�ord back error propagation

In what follows the norm

1

j � j will be used, where,

jxj =

 

X

A

[x]

2

A

!

1

2

(9)

where [x]

A

represents the A'th part of the Cli�ord number x, although this

norm is not the standard norm on a Cli�ord algebra (except in the case R

0;n

)

it does facilitate the derivation of a useful learning algorithm.

A feed-forward Cli�ord network with n inputs andm outputs can be thought

of as a function,

	 : (R

p;q

)

n

! (R

p;q

)

m

(10)

Where (R

p;q

)

n

is the n-dimensional left module

2

. over the Cli�ord algebra R

p;q

The following error metric will be used:

E =

1

2

Z

x2X

k	� �k

2

(11)

where X is some compact subset of the Cli�ord module (R

p;q

)

n

with the product

topology derived from the norm (9).

It is convenient from the point of view of the derivation of the BEP equations

to de�ne k � k as,

kxk

2

=

k

X

i=1

j(x)

i

j

2

(12)

where (x)

i

is a Cli�ord number representing the i'the part of x in the m dimen-

sional Cli�ord module over R

p;q

.

Assume that each node in the network has the same Cli�ord valued activa-

tion function f : R

p;q

! R

p;q

.

The output o

j

of the j'th neuron can be written as,

o

j

= f(net

j

) =

X

A

u

j

A

e

A

(13)

with u

j

A

a function from R

p;q

to R and

net

j

=

X

l

!

lj

o

k

(14)

where k sums over all the inputs to neuron j.

It is important to notice since R

p;q

is in general non-commutative the order

of multiplication in the above equation is a priori important. That is networks

with right and left multiplication with the same weights will have di�erent

behaviors. Although it can be shown that the approximation capabilities of left

and right multiplication networks are the same.

1

This is only a norm on the underlying vector space of the algebra, not on the whole of

the algebra. But it is su�cient for deriving a minimization algorithm.

2

If the reader is not familiar with the concept of a module, it is enough to view these

Cli�ord modules as weaker forms of n dimensional vectors with Cli�ord valued scalars instead

of real values scalars. Also see section 6 for the general theory.
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In the real case E depends on the number of weights in the network. In the

Cli�ord case E depends not only on all the weights but on the components of

each of the weights. De�ne � = k	 ��k

2

, then:

@E

@[!

ij

]

A

=

1

2

Z

x2X

@�

@[!

ij

]

A

(15)

using the chain rule,

@�

@[!

ij

]

A

=

X

B

 

@�

@u

j

B

 

X

C

@u

j

B

@[net

j

]

C

@[net

j

]

C

@[!

ij

]

A

!!

(16)

The partial derivative

@[net

j

]

C

@[!

ij

]

A

needs a bit of care. Using equation (14):

@[net

j

]

C

@[!

ij

]

A

=

X

l

@[!

lj

x

l

]

C

@[!

ij

]

A

=

@[!

ij

o

i

]

C

@[!

ij

]

A

Then using the fact that

!

kj

o

k

=

X

D;E

[!

kj

]

D

[o

k

]

E

�

(D;E)

e

D�E

with � de�ned as in (5), then,

@[!

kj

o

k

]

C

@[!

kj

]

A

= �

(D;E)

[o

k

]

E

(17)

where E is the basis element satisfying the equation:

�

(A;E)

e

A

e

E

= e

C

For example in the algebra R

2;0

the table of derivatives would look like,

@[x]

B

@[!

jl

]

A

B = 0 1 2 12

A = 0 [x

jl

]

0

[x

jl

]

1

[x

jl

]

2

[x

jl

]

12

1 [x

jl

]

1

[x

jl

]

0

[x

jl

]

12

[x

jl

]

2

2 [x

jl

]

2

�[x

jl

]

12

[x

jl

]

0

�[x

jl

]

1

12 �[x

jl

]

12

[x

jl

]

2

�[x

jl

]

1

[x

jl

]

0

(18)

The error derivative is now quite easy to calculate, if j is an output neuron then,

@�

@u

j

A

=

@

@u

j

A

k	� �k

@

@u

j

A

jo

j

� �

2

j

j

2

= 2[o

j

��

j

]

A

If j is not an output unit then the chain rule has to be used again.
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@�

@u

j

A

=

X

k

@�

@u

k

A

0

@

X

B;C

@u

k

B

@[net

k

]

C

@[net

k

]

C

@u

j

A

1

A

(19)

with k running over the neurons that receive input from neuron j.

The term:

@[net

k

]

C

@[u

j

]

A

is calculated in a similar manner to (17),

@[net

l

]

C

@u

j

A

= (�1)

�

0

[!

jk

]

D

(20)

where �

0

and D satisfy the same conditions as before. The derivatives:

@u

k

B

@[x

k

]

C

play the same rôle as f

0

(net

j

) does in the real valued case and depends on the

activation function used, this will be discussed in the next section.

Bringing this all together we have,

@E

@[!

ij

]

A

=

1

2

Z

x2X

X

B

�

B

j

 

X

C

@u

j

B

@[net

j

]

C

�

(A;E)

[o

k

]

E

!

(21)

with

�

B

j

=

@k	� �k

2

@u

j

B

= 2[o

j

��

j

]

B

(22)

if j is an output neuron. Again E is the basis element satisfying the equation:

�

(A;E)

e

A

e

E

= e

C

If j is not an output unit then the chain rule has to be used again.

�

B

j

=

X

k

�

B

k

0

@

X

B;C

@u

k

B

@[net

k

]

C

�

(A;D)

[!

jk

]

D

1

A

(23)

with k running over the neurons that receive input from neuron j D de�ned

in same way as E is in (3).

3.1 Choice of activation function

For the complex case it might be assumed that the rich �eld of complex analysis

would provide a suitable class of activation functions. There exists a complex

extension of the sigmoid function:

f(z) =

1

1 + e

�z

where e

�z

is the complex exponential function. This function is analytic(in the

sense of complex analysis) but it is not bounded, as it is on the real line. It
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is an unfortunate fact that any function that is complex analytic and bounded

is necessary constant by Liouville's theorem(see any standard text on complex

analysis for a proof).

The most important characteristic of a complex activation function, to en-

sure learning can take place: is that it should be bounded and nonlinear in its

components, its partial derivatives should exist and be continuous and the par-

tial derivatives must be such that learning always takes place in the presence of

non-zero error. For a fuller discussion see [GK92]. In [GK92] a simple complex

activation is proposed:

f(z) =

z

c+

1

r

jzj

(24)

With c and r real values. When restricted to the real domain the function f

looks like a sigmoid. This activation function has been used successfully in some

simple applications, for example the complex encoder-decoder problem. The

activation function above extends to the Cli�ord case, the partial derivatives

are easy to work out(using the notation of the previous section):

@u

A

@[x]

B

=

(

�

r[x]

A

[x]

B

(c+

1

r

jxj)

2

rjxj

if jxj > 0

0 if jxj = 0

(25)

if A 6= B and if A = B then,

@u

A

@[x]

B

=

(

r(jxj

2

�[x]

2

A

+crjxj)

jxj(cr+jxj)

2

if jxj 6= 0

1

c

if jxj = 0:

(26)

The norm being the Cli�ord norm de�ned in the previous section.

3.2 Results on Encoder-decoder problems

The encoder-decoder problem is often used to test new techniques in back error

propagation. While it is not a formal benchmark it us useful to get a feel of how

new algorithms can perform. Essentially for a network to solve the encoder-

decoder problem a training set is presented to the network which forces the

network to encode the training set in some say. For instance in the real case

with a 3-2-3 network if the network is trained on the set of vectors (1; 0; 0) ,

(0; 1; 0), (0; 0; 1) then the two hidden units will learn a binary coding of the

input signals.

Cli�ord networks have been trained on a variety of encoder-decoder prob-

lems. Figure 1 shows the mean square error against epochs and �gure 8 shows

the output of the network after training of a 3-2-3 encoder problem, more ex-

tensive results can be found in [PB94a]. It is interesting to note that the epoch

count is approximately the same as would be expected for a similar problem

on a conventional BEP network, this suggests that the added complexity of the

Cli�ord numbers it not a�ecting the convergence or pattern extraction e�ciency

of the network.

4 Relation to real valued networks

Given x inputs, y hidden neurons and z outputs, what is its relation to a real

valued network with x2

n

inputs y2

n

hidden units and z2

n

outputs (where 2

n

is
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the dimension of the algebra in question, all Cli�ord algebras have dimension 2

n

for some n)? Although real and Cli�ord networks can represent the same class

of functions as real valued networks

3

, there is not a direct and simple mapping

between them. To make things simpler the complex case is concentrated on,

these observations scale up to any Cli�ord algebra without di�culty.

Consider a single complex neuron with one input and no threshold:

?>=<89:;

OO

f(!z)

z

OO

!

It might be thought that this is translatable into an ordinary real valued

network in either of the following ways::

R

?>=<89:;

OO

I

?>=<89:;

OO

Or Even R

?>=<89:;

OO

I

?>=<89:;

OO

x

1

OO

!

1

x

2

OO

!

2

x

1

OO

!

1

>>

!

2

}

}

}

}

}

}

}

}

x

2

OO

!

3

``

!

4

A

A

A

A

A

A

A

A

This is not so, writing out the equations for a single neuron we have:

f(!z) =

!z

1 + j!zj

=

(w

1

+ w

2

i)(z

1

+ z

2

i)

1 + jwzj

=

(!

1

z

1

� !

2

z

2

)

1 + j!zj

+ i

(!

2

z

1

+ !

1

z

2

)

1 + j!zj

(27)

This indicates the second diagram is more appropriate, but each term in equa-

tion (27) has 1 + j!zj, this involves weight values from both neurons and hence

implies that there is some form of cross linkage between neurons.

R

?>=<89:;

OO

I

?>=<89:;

OO

x

1

OO

88

p

p

p

p

p

p

p

p

p

p

p

p

p

x

2

ffN

N

N

N

N

N

N

N

N

N

N

N

N

OO

Where the linkage terms are supplying the extra contributing factors to make

up the denominators. This clearly shows that there is no simple relationship

between a Cli�ord valued network and a real valued network. It also indicated

that Cli�ord networks may have the potential to form hidden unit encodeings of

input data that are in some way more e�cient, or that they are able to represent

more complex pattern relationships.

3

See section 7.
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5 Metric space theory for Approximation

Mathematically some care has to be taken with the notion of approximation.

What is required is some function E which given two functions �, gives:

E(�;  ) = 0 if and only if � =  (28)

and E(�;  ) be close to zero if � is `close' to  . Formalizing these requirements

leads to the notion of a metric space (see [Cop88] for a good introduction), which

is de�ned as a set X together with a distance metric d : X ! R satisfying the

following axioms:

d(x; x) = 0 for all x 2 X (29)

d(x; y) = d(y; x) for all x; y 2 X (30)

d(x; z) � d(x; y) + d(y; z) for all x; y; z 2 X (31)

.

Various choices of metrics are available for function spaces, �rst the metric

of uniform convergence:

E(�;  ) = supfj�(x)�  (x)j jx 2 Xg (32)

where X is a subset on which both � and  are de�ned, more formally X �

dom(�)\dom( ). To guarantee this value is de�ned extra conditions either have

to be imposed on X or on � and  . If X is stipulated to be compact (i.e. X

is bounded), or extra conditions or imposed on the asymptotic behavior of the

functions � and  as they both tend to in�nity then in both cases the equation

(32) will be well de�ned. In this paper only compactness assumptions will be

needed. Uniform convergence metrics are useful where networks are required to

perform equally well over the whole of the input space.

Second there are the L

p

metrics which are much easier to deal with mathe-

matically and are de�ned as:

�

p;�

(�;  ) =

�

Z

j��  j

p

d�

�

1

p

(33)

Again extra conditions have to be stipulated to make the metric always well

de�ned; similar to the conditions for the metric (32) above, see [Hor91] for

details.

In order to ask the question whether a class of networks can approximate a

class of continuous functions, the concept of density is needed. Given a class

of functions C and a function norm j � j a subset S is said to be dense in C

if the closure of S is the whole of C. What this means in practical terms for

neural networks is that a class S of neural networks is dense in a function space

C, if given a function f 2 C and an arbitrary � > 0 there exists a g 2 S such

that jf � gj < �. Many theorems prove that Neural networks are universal

approximators by showing the the function space of Neural networks is dense

in an appropriate function space.

6 Cli�ord modules

This section deals with a generalization of vector spaces, the theory of Modules

over rings: speci�cally Cli�ord modules. Various theorems are stated which are
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generalizations of traditional theorems such as the Hahn-Banach theorem and

the Riesz representation theorem [Rud66, Rud73]; all proofs are omitted, but

these can be found in [BDS82].

From now on the convention adopted in [BDS82] is used, where a Euclidean

Cli�ord algebra, that is an algebra of signature 0; n, is referred as an A algebra.

A module is a generalization of a vector space, where the set of coe�cients come

from some ring instead of a �eld, thus modules have a di�erent geometrical

structure from vector spaces.

De�nition 1 A unitary left A-module X

(l)

is an Abelian group X

(l)

;+ and

an operation (�; f) ! �f from A � X

(l)

into X

(l)

s.t. for all �; � 2 A and

f; g 2 X

(l)

the following hold:

(� + �)f = �f + �f (34)

(��)f = �(�f) (35)

�(f + g) = �f + �g (36)

e

0

f = f (37)

De�nition 2 Let X

(l)

be a unitary left A-module, then a function p : X

(l)

! R

is said to be a proper semi-norm if there exists a constant C

0

� 0 s.t. for all

� 2 A and f; g 2 X

(l)

the following conditions are satis�ed:

p(f + g) � p(f) + p(g) (38)

p(�f) � C

0

j�jp(f) (39)

p(�f) = j�jp(f) if � 2 R (40)

If p(f) = 0 then f = 0 (41)

De�nition 3 Given a module X

(l)

the algebraic dual X

�alg

(l)

is de�ned to be the

set of left A-linear functionals from X

(l)

into A.

That is the set of functionals T : X

(l)

! A s.t.

T (�f + g) = �T (f) + T (g) (42)

f; g 2 X

(l)

and � 2 A.

De�nition 4 The set of bounded T functionals with respect to a semi-norm p

is denoted X

�

(l)

� X

�alg

(l)

. Explicitly for all functionals T and for all f 2 X

(l)

:

jT (f)j � Cp(f) (43)

for some real constant C.

The following theorem is a a corollary to a Hahn-Banach type theorem for

Cli�ord modules for details and proof see sections 2.10-2.11 in [BDS82].

Theorem 1 Let X

(l)

be a unitary left A-module provided with a semi norm p

and let Y

(l)

be a submodule of X

(l)

. Then Y

(l)

is dense in X

(l)

if and only if for

each T 2 X

�

(l)

such that T jY

(l)

= 0

4

we have T = 0 on X

(l)

.

4

T restricted to Y

(l)

equal to zero

10



Now a useful class of function spaces is introduced.

De�nition 5 The space C

0

(K;A). Let K be a compact subset of R

r

(r �

1). Then C

0

(K;A) stands for the unitary bi-A-module of A-valued continuous

functions on K.

This can be thought of as a product of classical real valued functions i.e.:

C

0

(K;A) = �

A

C

0

(A;R)e

A

(44)

where A runs over all the basis elements in the Cli�ord algebra in question. A

norm can be de�ned for each f 2 C

0

(K;A):

jjf jj = sup

x2K

jf(x)j (45)

This norm is equivalent to the product norm taken from (44).

De�nition 6 Given an open set 
 � R

n

and a sequence (�

B

)

B

of real valued

measures on 
. Then for any open set in 
 an A valued measure can be de�ned:

�(I) =

X

B

�

B

(I)e

B

(46)

De�nition 7 An A-valued function:

f =

X

A

f

A

e

A

(47)

is said to be �-integrable in 
 if for all A and B ranging over the basis elements

of A each f

A

is �

B

integrable.

De�nition 8 For any �-integrable function f de�ne:

Z




f(x)d� =

X

A;B

e

A

e

B

Z




f

A

(x)d�

B

(48)

A Riesz representation type theorem can be obtained.

Theorem 2 Let T be a bounded A valued function in C

0

(l)

(K;A). Then there

exists a unique A valued measure � with support contained in K such that for

all f 2 C

0

(l)

(K;A):

T (f) =

Z

K

f(x)d� (49)

For a proof again see [BDS82].

7 The Approximation result

A feed-forward network with one output neuron and N inputs units and K

hidden units computes a function:

�(x) =

K

X

j=1

�

j

f(

N

X

i=1

y

ij

x

i

+ �

j

) (50)
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with f the activation function x

i

the i'th input, y

ij

weight values for the con-

nection between the input layer and the hidden layer and �

j

the weights from

the hidden layer to the output node.

�(x) can be seen as a function from R

N2

n

(where 2

n

is the dimension of A)

to A and hence a member of C

0

(l)

(R

N2

n

;A). This is why the material of the

last section was relevant. The next de�nition is important. What is shown is

that all activation functions satisfying the de�nition, when used in feed-forward

networks, are universal approximators. Then to complete the proof all that is

needed to show is that the activation functions considered in section 3.1 satisfy

the de�nition.

De�nition 9 An activation function f (considered as a function from R

N2

n

to

A) is said to be discriminating if for any given Cli�ord valued measure � with

support I

N2

n

if:

Z

I

N2

n

f(

N

X

i=1

y

i

x

i

+ �)d�(x) = 0 (51)

for all y

i

; � 2 R

0;n

implies �(x) = 0.

Theorem 3 Let f be any continuous discriminating functions. Then �nite

sums of the form:

�(x) =

K

X

j=1

�

j

f(

N

X

i=1

y

ij

x

i

+ �

j

) (52)

are dense in C

0

(l)

(I

N2

n

;A)

Proof: This proof is essentially a modi�cation of Cybenko's Theorem 1 in

[Cyb89] using the theory of Cli�ord modules in the last section.

Let S be the function space generated by sums of the form (52). Assume

that the closure of S is not all of C

0

(l)

(I

N2

n

;A); denote the closure of S by R.

By the Hahn-Banach type theorem (1) there is a bounded linear functional T on

C

0

(l)

(I

N2

n

;A), with T 6= 0 but T (R) = T (S) = 0. By Theorem 2 this bounded

linear functional is of the form:

T (h) =

Z

I

N2

n

h(x)�(x) (53)

for some measure � and h 2 C

0

(l)

(I

k2

n

;A). In particular since f 2 C

0

(l)

(I

k2

n

;A)

is in R, for any y

i

:

T (f) =

Z

I

N2

n

f(

N

X

i=1

y

i

x

i

+ �)d�(x) = 0 (54)

Since f is discriminating this implies � = 0 contradicting our assumption hence

S must be dense in C

0

(l)

(I

N2

n

;A).

So to prove that the class of feed-forward networks considered in section 3.1

are universal approximators, we have to show that functions of the form:

f(x) =

x

1 + jxj

(55)

are discriminating.
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Theorem 4

f(x) =

x

1 + jxj

(56)

is discriminatory.

Proof: A function f(x) is discriminatory , if:

Z

I

N2

n

f(

N

X

i=1

y

i

x

i

+ �)d�(x) = 0 (57)

for all y

i

implies that �(x) = 0. This is equivalent to saying that:

Z

I

N2

n

f(

N

X

i=1

y

i

x

i

+ �)d�(x) =

X

A;B

e

A

e

B

Z

I

N2

n

f

A

(

N

X

i=1

y

i

x

i

+ �)d�

B

(x) = 0 (58)

for all y

i

.

De�ne 


A

(x) : I

N2

n

! R to be the limit of:




A

(x) = lim

�!1

f

A

(�x) (59)

(where �x is a Cli�ord multiplication, with � a real number). So

f

A

(�x) =

[�z]

A

1 + j�zj

=

�[z]

A

1 + �jzj

(60)

So




A

(z) =

8

<

:

1 if [z]

A

> 0

0 if [z]

A

= 0

�1 if [z]

A

< 0

(61)

In our case:




A

(

N

X

i=1

y

i

x

i

+ �) =

8

>

<

>

:

1 if [

P

N

i=1

y

i

x

i

+ �]

A

> 0

0 if [

P

N

i=1

y

i

x

i

+ �]

A

= 0

�1 if [

P

N

i=1

y

i

x

i

+ �]

A

< 0

(62)

The sets de�ned by [

P

N

i=1

y

i

x

i

+�]

A

= 0 are hyper-planes, since [

P

N

i=1

y

i

x

i

+�]

A

is just a set of linear equations in the components of x

i

.

The rest of the proof is almost verbatim from Lemma 1 of Cybenko [Cyb89].

So let �

A

y;�

� I

2

n

be the hyper-plane de�ned by:

(

xj

"

N

X

i=1

y

i

x

i

+ �

#

A

= 0

)

(63)

and let H

A

y;�

be the half space de�ned by:

fxj[

N

X

i=1

y

i

x

i

+ �]

A

> 0g (64)

Then by the Lebesgue bounded convergence theorem we have:

0 =

Z

I

N2

n

f

A

(�x)d�

B

(x) =

Z

I

N2

n




A

(x)d�

B

(x) = �(H

A

y;�

) (65)
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Now if �

B

were always a positive measure the result would be trivial, but since

�

B

is an arbitrary measure the result is harder (since positive bits of � might

cancel out negative bits of �

B

).

Fix the y

i

's and de�ne:

F

A

(h) =

Z

I

N2

n

h([

K

X

i=1

y

i

x

i

]

A

) (66)

for some bounded �

B

measurable function h : R ! R. F

A

is a bounded

functional on L

1

(R).

Let h be the indicator function on the interval [�

A

;1), then:

F (h) =

Z

I

N2

n

h([

K

X

i=1

y

i

x

i

]

A

) = �

B

(�

A

y;�

) + �(H

A

y;�

) (67)

Similarly F (h) = 0. If h is the indicator of any open interval, by linearity

F (h) = 0 and hence for any simple function. Since the simple functions are

dense in L

1

(R) , F = 0.

In particular given the two functions s(x) = sin(x), c(x) = cos(x) :

F

A

(s(x) + ic(x)) =

Z

I

N2

n

s([

K

X

k=1

y

k

x

k

]

A

) + ic([

K

X

k=1

y

k

x

k

]

A

)d�

B

=

Z

I

N2

n

exp(i[

K

X

k=1

y

k

x

k

]

A

)d�

B

= 0 (68)

for all y

k

. Therefore the Fourier transform of �

B

is zero, hence �

B

must be zero

and hence f is discriminatory.

One important thing to point out with this proof is that the order of weight

multiplication is irrelevant; the whole proof could be repeated with networks

where multiplication was done on the right. Thus it does not matter theo-

retically which sort of nets (left or right weight multiplication) are used for a

particular problem. Practically not much is known, but in all the examples the

author has tried, the performance of the net does not seem to be a�ected by

the order of weight multiplication.

Thus it has been shown that Cli�ord valued networks with values taken from

Euclidean algebras, which include the complex numbers and the Quaternions,

are universal approximators in the sense of [Cyb89]. That is any continuous

function on a bounded Cli�ord domain can be approximated to any degree of

accuracy by a Cli�ord valued network. Further more both left and right valued

weight multiplication networks have been shown to have the same computational

power. Which due to the non-commutative nature of Cli�ord algebras was not

a priori obvious.

8 Conclusion and further work

This paper has presented the Back Error Propagation algorithm for Cli�ord val-

ued networks and has demonstrated that feed-forward Cli�ord networks are able

to solve simple problems. In [Pea94] more extensive encoder-decoder problems

14



are solved with Cli�ord networks, together with a multi-dimensional extension

of Rosenblatt's Perceptron building on the work of [Geo93]. It is still to be

demonstrated whether or not representing multi-dimensional signals in single

Cli�ord values will necessarily give a more e�cient representation of problem

domains, however it is likely that for speci�c domains this may be the case. It

is hoped that applications from physics ([CC86]) will furnish examples. One

possibility is, given that Cli�ord numbers are vectors in some 2

n

dimensional

space, the direction of the number can be taken as a symbol representing a class

or outcome, while the magnitude of the number could represent con�dence in

the outcome. In the complex case, a number such as �e

i�

, � would represent

some value and � some degree of con�dence in that value. The beni�t of going

to higher dimensions would result, not in more symbols, but in more degrees of

freedom in representing the symbols.
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Pattern 0 (1.00000,0.00000,0.00000,0.00000)

(0.00000,0.00000,0.00000,0.00000)

(0.00000,0.00000,0.00000,0.00000)

Output (0.82741,0.00180,-0.00034,0.00075)

(-0.00896,-0.01346,0.03117,-0.00653)

(-0.02300,0.00890,-0.00371,-0.00493)

Pattern 1 (0.00000,0.00000,0.00000,0.00000)

(1.00000,0.00000,0.00000,0.00000)

(0.00000,0.00000,0.00000,0.00000)

Output (0.01103,0.02384,-0.00875,-0.00106)

(0.82393,-0.00412,-0.00112,-0.00050)

(-0.02084,0.00501,-0.00617,0.00553)

Pattern 2 (0.00000,0.00000,0.00000,0.00000)

(0.00000,0.00000,0.00000,0.00000)

(0.00000,0.00000,0.00000,-1.00000)

Output (0.01646,0.03726,-0.02079,-0.00340)

(-0.01691,-0.02265,0.03517,-0.00731)

(-0.00301,0.00194,-0.00061,-0.82819)

Table 1: Outputs for a trainied 3-2-3 encoder-decoder network
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