Symmetry Breaking in Constraint Satisfaction
with Graph-Isomorphism: Comma-Free Codes

Justin Pearson
Department of Information Technology
Division of Computer Systems
Uppsala University, Box 337, 751 05 Uppsala, Sweden
justin@docs.uu.se

December 9, 2003

Abstract

In this paper the use of graph isomorphism is investigated within
the framework of symmetry breaking in constraint satisfaction prob-
lems. A running example of Comma-free codes is used to test the
methods. But the technique can be extended to other problems. In
particular Symmetry Breaking via Dominance Detection (SBDD) is
applied to find Comma-Free Codes. To check if a current partial solu-
tion is symmetrically equivalent to a previously found no-good, graph
isomorphism is used. In particular the powerful and fast graph iso-
morphism package nauty is used. Experimental results show that for
difficult instances SBDD+Nauty out performs lexicographic ordering®.

1 Introduction

Constraint Satisfaction [1, 5, 14] is a framework for stating and solving com-
binatorial problems. A constraint satisfaction problem (CSP) is a collection

LAn earlier version of this paper appeared in the SymCon03 workshop on Symmetry
in Constraints held at the CP03.

of variables that are to be assigned values from domains subject to a col-
lection of constraints that restrict possible combinations of values of sets of
variables. In general solving CSPs is NP-complete.

Most solution methods for CSPs involve a mixture of backtracking on
variable assignment and propagation of local information. Often propagation
takes the form of local consistency methods (such are arc-consistency) or
specialised propagation algorithms implemented as global-constraints.

Recently [9, 6, 2, 3] there has been much interest using symmetries in-
herent in problems to speed up search. Essentially symmetrically equivalent
branches in the search space are pruned. Often this is achieved by either
inserting new constraints on failure [9] to exclude symmetrically equivalent
nodes later in the search or checking the current partial against previous
nogoods [6].

This paper uses graph-isomorphism to check if a partial assignment is
symmetrically equivalent to a previously found nogood this is applied to
a running example, comma-free codes. The method of graph isomorphism
could be applied to other problems. The rest of paper is organised as follows:
Comma-Free codes are introduced, then Symmetry Breaking via Dominance
Detection (SBDD) is outlined the required graph is then constructed and
finally experimental results are presented.

2 Comma-Free Codes

A comma-free code [10, 11, 12] over an alphabet A is a set, C' C A*, of words
over A such that given any two words, w,v € C, any sub-word, u, of the
concatenation, wwv, is not in the code. Here we will be only interested in
codes where all the words have the same length. See figure 1 for an example
of a comma-free code.

00001 00101 00110 11001 11010 11110

Figure 1: A Comma-Free Code of 6 words of length 5 over the alphabet {0, 1}

Comma-Free Codes were originally inspired by biology. Genetic informa-
tion in the cell is stored in DNA, which for a computer scientist is a string
of letters from the alphabet A, C', T and . Via a transcription mechanism
proteins are constructed which are chains of amino acids from an alphabet
of 20 different acids. One question that exercised biologists was: How are

each of the 20 different acids coded as strings of DNA? One proposal is that
the 20 acids are coded as comma-free codes, so as to aid transcription. As
it turns out there is a comma-free code of size 20 of words of length 3 over a
four letter alphabet. But in reality nature is not so simple: the genetic code
is not a comma-free code and in fact is not even a code in the mathematical
sense. Figure 2 shows a comma free code over alphabet size 4 with words of
length 3.

112 113 114 212 213 214 223 224 312 313
314 323 324 334 412 413 414 423 424 434

Figure 2: Comma-Free code with word length 3 over an alphabet of size 4.

Comma-Free Codes are still interesting from a mathematical point of
view. One property of interest in the theory of comma-free codes is: given
an alphabet size and a word length what is the maximal number of words a
comma-free code can contain?

3 Symmetry Breaking via Dominance Detec-
tion (SBDD)

Essentially SBDD [6] prevents symmetrically equivalent no-goods being ex-
plored. In more detail, given a failure during search (where a failure is some
partial assignment that cannot be extended) the search procedure should
guarantee that no symmetrically equivalent partial assignment is ever ex-
plored. In SBDD an extra procedure is added to the search procedure which
checks if the current partial assignment has already been seen before (domi-
nated) as a no-good.

One way of implementing SBDD is by maintaining a database of previ-
ously seen partial assignments and checking the current assignment against
all the previous partial assignments for equality modulo symmetry.

Various modifications can be applied to SBDD in reducing the number
of no-goods that need to be stored. In particular during depth-first search
no-goods below a completed node in the search tree can be removed.

In implementing a search procedure for comma-free codes each no-good
and partial assignment will be converted into a graph. In implementing
SBDD with the optimisation of removing redundant no-goods the dominance

checking procedure has to check if the graph of the previously found no-good
is isomorphic to a subgraph of the current no-good. This procedure is NP-
complete. In the implementation of SBDD used in this paper time is traded
for space. All the no-goods are kept, none are thrown away as would be done
with an optimised implementation of SBDD. This allows graph isomorphism
to be used as a dominance check since only no-goods at the same level in the
search tree are checked. The complexity of graph isomorphism is not known,
but in practice it is often polynomial.

4 Comma-Free Codes: Graph Isomorphism
and Symmetry Breaking

To model and find comma-free codes using a CSP, a code is represented
as a list of lists where each list represents a word. There are two obvious
symmetries with this representation. First, the order of the words does not
matter: that is any permutation of the words is still a comma-free code. Sec-
ondly given any comma-free code, C', over an alphabet A and any bijection,
f A — A, on the alphabet, applying the bijection to every word in the
code (giving the code {f(w)|lw € C} where f(w) = f(w1)--- f(wg) when
w = wy -+ -wy) is still a comma-free code and finally given any comma free
code C the code C® which contains all the words in C reversed is still a
comma free code. In this paper only the first two symmetries are broken.

One way of combating the first symmetry is to order the code words lex-
icographically using the lex-chain [4] global constraint. The second sym-
metry (the value symmetry) is harder to break efficiently and even harder to
break in the presence of the first symmetry. One such approach would be to
reformulate the problem as a matrix model and use two lexicographic chain
constraints (see [7]) but this would still not break all the symmetry in the
problem.

The search procedure implemented to solve the CSP searches for a com-
plete word at a time in the code. To check if the current partial assignment
is symmetrically equivalent to a previously found no-good at the same level
graphs are constructed for both the partial assignment and the no-good such
that the graphs are isomorphic if and only if the assignments are symmetri-
cally equivalent. Isomorphism of the graphs is checked using the nauty [13]
system, which is able to return a canonical graph such that two graphs are

isomorphic if and only if they have the same canonical graph. Hence if the
no-goods are stored as nauty canonical graphs then a new partial assignment
can be converted into a canonical graph and checked against stored no-goods.

The graph used for isomorphism testing is constructed as follows. Given
a partial assignment of n code words of the form:

k

— ol
W, =w,...w;

where each wzj is a letter from the alphabet of the code (because of the way
the search procedure works there will be no code words to level n which have
only some entries grounded), then a coloured graph with 1 + & colours is
constructed as follows:

e The set of nodes of the graph is the disjoint union of the sets A (the
domain or the alphabet of the code) and the set {w!|1 <i<nAl<
j <k}

e The nodes in A are all the same colour and the members of the disjoint
sets K; = {w}|1 < j < n} give the k other colours for 1 <i < k;

J+1

e For every graph, regardless of the code, there are edges from wzj to w;

foralll <i:<mandalll<j<Ek;

e Foralll1<i<mand1<j< kifw{:dthenthere is an edge from d
to wy.

In figure 3 an example graph is given for the code {001,101}. It is then
possible to prove that two codes of the same length are symmetrically equiv-
alent if and only if the two graphs are coloured graph isomorphic. Such
an isomorphism gives a bijection on the code words. The separation of the
colours gives a bijection on the domain elements. The edges between w! and
wf“ forces any isomorphism f such that f (wf) = wg,’ forces f (wf“) to be
w{,’H. Finally edges between the domain elements and the nodes wg force the
isomorphism on domain elements to be an isomorphism of the code words.

Figure 3: Coloured graph for the code {001,101}

5 Results

An implementation of SBDD with graph isomorphism was compared against
lexicographically ordering the words. Although lexicographic ordering will
not break all the symmetry (that is both the value symmetry and the inter-
changeability of the words in the code) in many cases it performs well. It
is not until relatively difficult instances that SBDD with graph isomorphism
competes with lexicographic ordering. In figure 4 results are presented for

Code Length | Time: SBDD | Backtracks | Time: lex | Backtracks
13 1.17 34 0.84 18
14 4.4 96 241 98
15 259.09 3145 159.29 4198
16 328.37 3145 208.6 4198
17 1891.27 13608 3729.96 27680
18 2272.76 13608 4591.89 27680
19 2741 13608 5768.78 27680
20 3234.31 13608 7247.42 57680

Figure 4: Results on domain size 4, word length 3, all times reported in
seconds.

codes of words of length 3 over a domain of size 4 using Sicstus Prolog on a
Pentium 4 2.53Ghz machine (with 512Mb of memory) running Linux; note
that in this case 20 is the maximal code length. The search looks for one
code satisfying the constraints. The number of backtracks does not refer to
the total number of backtracks, but the backtracks at the word level. At each

6

level in the search tree a complete word is found, thus on a backtrack a new
code word is found. To find each code word at each level in the tree Sicstus’
normal labelling procedure is used. After code length 16, SBDD with graph
isomorphism wins. Also in figure 5 results are shown for code words of length

3 over an alphabet of size 5.

Code Length | Time: SBDD | Backtracks | Time: lex | Backtracks
22 36.02 704 33.58 1092
23 40.16 704 40.43 1092
24 44.74 704 47.74 1092
25 47.93 704 54.07 1092
26 841.82 2926 878.23 10827

Figure 5: Results: Domain size 5, word length 3.

6 Conclusion

Although it might seem that losing the optimisations possible with SBDD
on a depth-first search requires many no-goods to be stored and checked, by
using graph isomorphism these no-goods can be checked relatively quickly.
Also since the symmetry groups in general would be large and constructing
the graphs is quite simple this method avoids generating many no-goods as
would be done with SBDS or its optimisations [8].

The technique of using graph isomorphism could also be applied to Bal-
anced Incomplete Block Designs and the Social Golfer and this is work in
progress. This work was partially supported by a STINT institutional grant
1G2001-67 of STINT the grant 221-99-369 of the Swedish Research Coun-
cil an earlier version of this work was presented at SymCon’03 at CP’03
conference Cork.

References

[1] K.R. Apt. Principles of Constraint Programming. Cambridge University
Press, 2003.

2]

3]

[4]

[5]
[6]

[7]

8]

[9]

[10]

[11]

[12]

[13]

R. Backofen. Constraint techniques for solving the protein structure
prediction problem. In M. Maher and J.-F. Puget, editors, Proceedings
of CP’98, volume 1520 of LNCS, pages 72-86. Springer-Verlag, 1998.

R. Backofen and S. Will. Excluding symmetries in constraint-based
search. In J. Jaffar, editor, Proceedings of CP’99, volume 1713 of LNCS,
pages 73-87. Springer-Verlag, 1999.

Mats Carlsson and Nicolas Beldiceanu. Arc-consistency for a chain of
lexicographic ordering constraints. Technical Report T2002-18, Swedish
Institute of Computer Science, 2002.

Rina Dechter. Constraint Processing. Morgan Kaufmann, 2003.

T. Fahle, S. Schamberger, and M. Sellmann. Symmetry breaking. In
T. Walsh, editor, Proceedings of CP’01, volume 2293 of LNCS, pages
93-107. Springer-Verlag, 2001.

P. Flener, A.M. Frisch, B. Hnich, Z. Kiziltan, I. Miguel, J. Pearson, and
T. Walsh. Breaking row and column symmetries in matrix models. In
P. Van Hentenryck, editor, Proceedings of CP’02, volume 2470 of LNCS,
pages 462-476. Springer-Verlag, 2002.

Ian P. Gent, Warwick Harvey, and Tom Kelsey. Groups and constraints:
Symmetry breaking during search. In P. Van Hentenryck, editor, Pro-
ceedings of CP’02, volume 1520 of LNCS, pages 415-430. Springer-
Verlag, 2002.

[LP. Gent and B.M. Smith. Symmetry breaking during search in con-
straint programming. In Proceedings of ECAI’00, pages 599-603, 2000.

S.W. Golomb and L.R. Welch. Comma-free codes. Candian Journal of
Mathematics, 10:202-209, 1958.

B.H. Jiggs. Recent results in comma-free codes. Canadian Journal of
Mathematics, 15:178-187, 1963.

Nguyen Huong Lam. Completing comma-free codes. Theoretical Com-
puter Science, 301:399-415, 2003.

Brendan McKay. nauty user’s guide (version 2.2). Available via
http://cs.anu.edu.au/people/bdm/nauty/.

8

[14] P. Van Hentenryck. Constraint and integer programming in OPL. IN-
FORMS Journal on Computing, 14(4):345-372, 2002.

