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1 Preamble

While finishing this paper I found the paper [9] which proves that a binary
operation that is generates a minimal clone is NP-complete is the operation is
non-commutative and is polynomial if the operation is equivalent to a commu-
tative operation that generates the clone. From this result all results in this
paper can be (even more) trivially proved. This paper might be of interest to
some readers as an introduction to the theory of the complexity of constraint
satisfaction problems.

2 Introduction

A Constraint Satisfaction Problems(CSP)[25, 33] is a collection of variables
which are to be assigned values from a domain and a collection of (often mu-
tually conflicting) constraints that restrict the possible combinations of values
that the variables can take. A solution is then a mapping from variables to the
domain in which every constraint is satisfied. Graph colouring can be seen as
a CSP: variables correspond to the nodes of the graph the domain is the set of
colours that the graph is coloured with and between each pair of variables rep-
resenting two nodes that are connected there is a constraint, 6=, forcing the two
variables to take different values. Using different constraints (and non-binary
constraints) more complicated problems can be expressed.1 Practically [38, 37]
many techniques have been developed: notably propagation [3, 31] and the use
of specialised global constraints [1] which allow non-trivial problems to be solved
in times that are often comparative with Integer linear programming [35].�mailto:justin.pearson@it.uu.se

1Although all NP-complete problems are polynomially equivalent, so that for example

boolean satisfiability can be expressed as a graph colouring problem. Part of the power of

CSPs is that often the structure of a problem can be captured in a more natural way without

coding the structure away.
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The general Constraint satisfaction Problem (CSP) is NP complete [18]. It is
a natural to ask what restrictions on can be put on the general CSP to guarantee
that problem instances can be solved in polynomial time. There are in general
two ways of putting restrictions on a CSP: either structural restrictions[19, 12]
on how constraints can be put together or restrictions on which constraints
can be used[11]. For example in graph colouring a structural restriction would
correspond to limiting the types of graphs that are allowed to be coloured; for
example, trees can be coloured in polynomial time. While limiting the types
of constraints that are allowed in the graph colouring would corresponding to
changing the 6= constraints; for example, restricting the colours to only two
results in a tractable sub-class of graph colouring.

In this paper we shall look at what restrictions can be placed on which
constraint are used to build up CSP so that all instances are tractable. By
a constraint language we simply mean a set of constraints: a CSP instance
belongs to a constraint language if it is only built with constraints from that
language. There has been a long line of investigation into tractable constraint
languages[17, 24, 20, 27, 16, 11, 7, 6]. Of particular interest are languages that
are maximally tractable: in that when any other new constraint is added to
the language the language becomes NP-complete. These maximally tractable
languages correspond to mathematical structures known as minimal clones [36,
32, 23, 30, 13].

3 Definitions

We recall some notations that are used in [6, 29] as well as some notions from
universal algebra[36, 26, 10].

3.1 The Constraint Satisfaction Problem

Denote the set of n-tuples of a set D as Dn.

Definition 1. An instance of a constraint satisfaction problem consists of the
following:� a finite set of variables, V ;� a finite domain of values, D;� a set of constraints fC1; : : : ; Cqg where each constraint is a pair (Si; Ri)

where Si is a list of variables of length mi called the constraint scope andRi is a subset of Dmi called the constraint relation.

A solution to an instance of the constraint satisfaction problem is a function,f : V ! D, from the set of variables to the domain such that the image of each
constraint scope is an element of the corresponding relation that is for all i,f(Si) 2 Ri.
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Definition 2. Given a set of relations, Γ, define CSP(Γ) to be the class of
decisions problems in which instances are CSPs in which all constraint relations
come from Γ.

The classification problem is, for which sets Γ are all problems in CSP(Γ)
tractable? For the case of the 2-element domain was classified in [34] although
many special cases for arbitrary domains [20, 27, 15, 29, 6] only recently has a
full classification for the 3-element domain been achieved [5].

3.2 Functions and clones

Given an n-ary functions f : Dn ! D and n m-ary functions, g1; : : : ; gn, the
composition is defined to bef(g1(x1; : : : ; xm); : : : ; gn(x1; : : : ; xm)):
A set of functions is called a clone if it contains all projections and is closed
under composition. A clone is trivial if it only contains projections. A clone is
a called is called minimal if every proper sub-clone is a trivial clone.

Given a set a n-ary function f : Dn ! D we say that f preserves an m-ary re-
lation R if for every list (not necessarily distinct) of n-tuples (d11; : : : ; dm1); : : : ; (d1n; : : : ; dmn)
belonging to R we have that:f 0BBB� a11 a12 : : : a1na21 a22 : : : a2n

...
...

...am1 am2 : : : amn 1CCCA =

0BBB� f(a11; a12; : : : ; a1n)f(a21; a22; : : : ; a2n)
...f(am1; am2; : : : ; amn)

1CCCA 2 R:
Given a set of functions C the set of all relations that are preserved by all
members of C is denoted Inv(C) and given a set of relations F the set of
functions preserving all members of F is denoted Pol(F ).

The two functions Inv and Pol form a Galois connection. The closed sets
of functions Pol(Inv(C)) are clones. The closed sets of relations Inv(Pol(F ))
are known as relation clones[36, 28]. The following theorem states that the
interesting sets of relations to study for tractability are exactly sets of relations
of the form Pol(Inv(C)).

Theorem 1. [20] Let Γ0 and Γ be sets of relations over a finite set D where Γ is
finite. if Γ � Inv(Pol(Γ0)) then CSP(Γ) is reducible to CSP(Γ0) in polynomial
time.

Since Inv and Pol form a Galois connection the minimal clones correspond
to sets of relations that are maximal. Where maximal means that adding any
other relations generates the relational clone of all relations. This is because
adding an extra relation, R, will give the clone Inv(Pol(Inv(C) [ fRg)) which
is a subclone of Inv(C) which must be a trivial clone. Hence Pol(Inv(C)[fRg)
must contain all relations giving an NP-complete language.
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Given a function f the clone generated by f is the set of functions Pol(Inv(ffg)).
We say a clone, C, is tractable if all finite subsets Γ 2 Inv(C) then the deci-
sion problem CSP(Γ) is tractable and C is NP-complete if there is a subset
Γ 2 Inv(C) such that CSP(Γ) is NP-complete.

Minimal clones have been classified in [32], all types of minimal clones
have been classified for tractability in [20] except for clones generated by a
binary idempotent operation which contains both NP-complete clones as well
as tractable clones. These clones where finally classified in [9].

3.3 Universal Algebra

In this section the necessary background from universal algebra is presented
sufficiently to state the classification theorem for binary entropic clones from
[23].

Universal algebra is the study of general algebraic structures. An algebraA is a pair (A; (fi)i2I) where each fi is a function from Dmi ! D for somemi. When the algebra consists of a single operation the algebra will simply
be written as a pair (A; f). In this paper we are only concerned with algebras
(A; �) where � is binary operation. Instead of writing �(a; b) =  we shall writea � b = . Much of universal algebra consists in studying equations that algebras
satisfy. The correspondence between classes of algebras and the equations that
they satisfy is the theory of varieties[10].

Give an algebra A = (A; f) we say that A is tractable (or NP-complete)
if the relational clone Invffg is tractable (or NP-complete). Obviously this
can be extended to algebras containing more than one operation details can be
found in [11, 6].

Definition 3. An algebra, (A; �) with a single binary operation is entopric if
for all: � x1 y1x2 y2

�
we have that

(x1 � x2) � (y1 � y2) = (x1 � y1) � (x2 � y2)

In fact the definition generalises to algebras with operations of arbitrary
arity (see [23, 2]).

Definition 4. A rectangular band[26] is an algebra satisfying the identityx � (y � z) = x � z
It is proved in [27] then any rectangular band algebra is in NP.

Definition 5. A binary operation is a semilattice if it is a commutative, idem-
potent and associative. That is x � x = x,x � y = y � x and x � (y � z) = (x � y) � z
for all x; y and z.
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The fact that semilattices are tractable can be proved via variety of methods
either as a generalisation of the proof in [22] or the problem can be proved [15]
to have bounded width [16].

Definition 6. A binary operation defines a right semilattice if it satisfies the
entropic law and the following equations:

1. x � x = x
2. x � (x � y) = x
3. (x � y) � y = x � y

Definition 7. A binary operation is a p-cyclic groupoid if it is idempotent,
satisfies the entopic laws and satisfies the equations:

1. x � (x � y) = x
2. (� � � ((x � y) � y) � � �) � y| {z }p y’s

= x
Definition 8. left normal band is an idempotent algebra satisfying

1. x � (y � z) = (x � y) � z
2. x � (y � z) = x � (z � y)

In this paper we are also interested in minimal clones generated by binary
affine operations. That is given some finite field with a prime number of elementsFp then the algebras (Fp; rx + (1� r)y) for r 2 Fp n f0; 1g generates a minimal
clone. It can be proved that any member R 2 Invfrx + (1� r)yg is defined by
a set of linear equations.

We can now state one of the the major theorems form [23].

Theorem 2. If C is a entropic minimal clone generated by an idempotent
binary operation then C is isomorphic or anti-isomorphic to the clone of one of
the following classes of varieties:

1. Affine spaces of the form (Fq ; rx + (1� r)y),

2. Rectangular bands,

3. Semilattices,

4. right semilattices,

5. p-cycle groupoids,

6. Left normal bands.
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3.4 Proving complexity results from Algebra

The general strategy for proving NP-completeness is to show some NP-complete
problem can be expressed in the constraint language. Tractability is proved by
giving some algorithm (or class of algorithms) that solves any instance in the
constraint language.

A function f : Dn ! D is essentially unary if there exists a unary functiong such that f(a1; : : : ; ai; : : : ; an) = g(ai) for some i and for all a1; : : : ; an 2 D.

Theorem 3. [20] For any finite set D and for any set of relations Γ on D ifPol(Γ) contains essentially unary operations only then CSP(Γ) is NP-complete.

We shall only define the notion of sub-algebras for algebras with a single
binary operation (for the more general definition see [10]).

Definition 9. Given an algebra A = (A; �) and a subset U � A then U = (U; �)
is a subalgebra of A if for all u; v 2 U then u � v 2 U .

It can be proved [6] that given an algebra A if U is a sub-algebra that is
NP-complete then A is NP-complete (this is also true for homomorphic images,
although we won’t need that in this paper). For example given the algebra
(f1; 2; 3g; �) with the Cayley table:� 1 2 3

1 1 2 2
2 1 2 1
3 3 2 3

then this algebra is NP-complete because the subalgebra on the elements f1; 2g
generates only essentially unary operations. The NP-completeness results in
this paper consists in proving that certain classes of algebras always have two
element sub-algebras that are essentially unary.

Most Tractability results can be divided into two distinct classes either
tractability can be achieved by showing only local operations are needed, so
called problems of bounded width[16, 15, 21] or showing that the problem has
a group theoretic structure[16] (or more generally that there is a Malt’sev term
in Pol(Γ) see [4, 8]) which are non-local in nature. If the relations of a CSP are
defined by sets of linear equations over finite fields then a solution to the CSP
can be found in polynomial time by Gaussian elimination. Although there has
recently been an interesting mixture of the two [14].

4 The complexity of Commutative Binary Min-

imal Clones

We have seen that affine spaces and semilattices are tractable. We now prove
that all other non-commutative (and non affine) entropic minimal clones gener-
ated by a binary operation are NP-complete.
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First of all a left-normal band which is commutative is a semilattice (by
definition) and hence tractable.

Lemma 1. Given a left normal band with elements � and � such that ��� 6= ���
then the algebra is NP-complete.

Proof. We have the following sub-algebra:� �� ���� �� ���� �� ��
The algebra is idempotent we just have to verify (� ��) �(� ��) and (� ��) �(� ��).

(� � �) � (� � �) = (� � �) � (� � �) = � � �
the other identity is verified in the same way.

Hence any non-commutative left normal band has a two element algebra
which is a projection (which is essentially unary) and hence it is NP-complete.
We now prove that any right-semilattice or any p-cyclic groupoid is NP-complete.

Lemma 2. An algebra satisfying the equations:

1. x � x = x
2. x � (x � y) = x
3. x � (y � z) = x � y

is NP-complete.

Proof. We shall prove this by demonstrating that there is always a two-element
sub-algebra which is a projection. Pick any element � there must be an element� such that � � � = �. This because x � (x � y) = x gives that � � (� � ) = � for
any . So setting � = � �  for some .

Further, we can pick  such that (��) 6= �. For if not, suppose that ��� = �
if and only if � = �. Then for all Æ0; : : : Æn in the domain where Æi 6= � we have
that: � � (� � Æi) = �
but since (� � Æi) = �i 6= � we have that � � �i = � giving a contradiction.

Hence we can pick � such that � 6= �. Now given that � �  6= � using the
equation x � (y � z) = x � y to derive that � � � = � � (� � ) = � � � = � hence we
have the following multiplication table for � and �:� � �� � �� � �
hence there is a two element sub-algebra with is a projection hence the algebra
is NP-complete.
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Finally it is proved in [23] that any entropic binary algebra satisfying x �
(x � y) = x also satisfies x � (y � z) = x � y and further that is V is a variety of
idempotent entropic algebra with a single binary function satisfying x�(x�y) = x
which has a minimal clone that V is either the variety of right semilattices or
the variety of p-cyclic groupoids and is hence NP-complete by Lemma 2.
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