
A Constraint Optimisation Model for Analysis
of Telecommunication Protocol Logs

Olga Grinchtein1(B), Mats Carlsson2, and Justin Pearson3

1 Ericsson AB, Stockholm, Sweden
olga.grinchtein@ericsson.com

2 SICS, Stockholm, Sweden
Mats.Carlsson@sics.se

3 Uppsala University, Uppsala, Sweden
justin.pearson@it.uu.se

Abstract. Testing a telecommunication protocol often requires protocol
log analysis. A protocol log is a sequence of messages with timestamps.
Protocol log analysis involves checking that the content of messages and
timestamps are correct with respect to the protocol specification. We
model a protocol specification using constraint programming (MiniZinc),
and we present an approach where a constraint solver is used to perform
protocol log analysis. Our case study is the Public Warning System ser-
vice, which is a part of the Long Term Evolution (LTE) 4G standard.
We were able to analyse logs containing more than 3000 messages with
more than 4000 errors.

Keywords: Telecommunication protocol · Testing · Constraint
programming

1 Introduction

In this paper we investigate the use of constraint programming to implement a
part of a test harness for equipment involved in the Long Term Evolution (LTE)
4G standard [1,2], in particular the broadcast of public warning messages [3].
The protocol specification includes a number of messages with complex timing
requirements between them. The contribution of the paper is a new approach
to analyse the correctness of protocol logs. The main novelty is that we use
constraint programming [4] to directly model the protocol and use a constraint
solver as a test harness in order to find incorrect behavior in logs. Some results
of this paper appeared in the workshop paper [5] presented as work in progress.

In this work, we model a part of the protocol directly in the MiniZinc [6]
language (see Section 2). This approach requires a script that reads a protocol
log that is a plain text, creates arrays of MiniZinc parameters, and assigns values
to the parameters according to the information provided in the log. We also
have variables that represent correct timestamps of some messages. There are
parameters such as delays of messages for which we know only boundary values,
c© 2015 US Government. Work subject to 17 USC 105. All other rights reserved.
J.C. Blanchette and N. Kosmatov (Eds.): TAP 2015, LNCS 9154, pp. 137–154, 2015.
DOI: 10.1007/978-3-319-21215-9 9

138 O. Grinchtein et al.

which adds complexity to the model. The complexity of the model also depends
on the number of messages, and we use a technique to partition timestamps
of messages into classes. Protocol log analysis in this case is an optimisation
problem. We use a constraint solver to find the optimal solution minimising the
number of unsatisfied constraints.

The rest of this paper is structured as follows: in Section 2 we give a very
brief overview of constraint programming and MiniZinc; in Section 3 we explain
main steps of the approach by an example; in Section 4 we give the necessary
telecommunication background to understand the case study; in Section 5 we
give in some detail the constraint model that is required to test the protocol
logs for correctness; in Section 6 we describe optimisation technique to reduce
complexity of the model; and in Section 7 we present experimental results.

2 MiniZinc and Constraint Programming

Constraint Programming [4] (CP) is a framework for modelling and solving com-
binatorial problems including verification and optimisation tasks. A constraint
problem is specified as a set of decision variables that have to be assigned values
so that the given constraints on these variables are satisfied, and optionally so
that a given objective function is minimised or maximised. Constraint solving
is based on the constructive search for such an assignment. Constraint propa-
gation plays an important role: a constraint is not only a declarative modelling
device, but has an associated propagator, which is an algorithm to prune the
search space by removing values that cannot participate in a solution to that
constraint. The removal can trigger other propagators, and this process contin-
ues until a fixpoint is reached, at which time the next assignment choice must
be made.

MiniZinc [6] is a constraint modelling language, which has gained popularity
recently due to its high expressivity and large number of available solvers that
support it. It also contains many useful modelling abstractions such as quan-
tifiers, sets, arrays, and a rich set of global constraints. MiniZinc is compiled
into FlatZinc, a constraint solving language which specifies a set of built-in con-
straints that a constraint solver must support. The compilation process is based
on flattening by introducing auxiliary variables, substituting them for nested
subexpressions, and selecting the appropriate FlatZinc constraints. Common
sub-expression elimination plays an important role as well. All the constraints
presented in this paper are shown in a form that is very close to their MiniZinc
version. We use fzn-gecode, the Gecode FlatZinc back-end.

An application of constraint programming to testing in industry is reported in
[7] and [8]. In [9] constraint solving is used to derive test cases that distinguish
between a piece of code and a mutation of that piece of code. More recently
there has been a lot of work on using recent advances in constraint programming
applied to white box testing of Java or C [10,11]. In [12] constraint programming
is used to generate protocol logs to test telecommunication test harness.

A Constraint Optimisation Model for Analysis 139

3 Overview of the Approach by an Example

We analyse protocol logs that consists of a sequence of messages with times-
tamps. An abstract sequence of protocol messages is shown in Figure 1. This is
not a real log, but we use it to illustrate the approach. The radio base station
transmits three messages M1, M2 and M3 to the mobile phone. Message M1 does not
contain any parameters. Message M2 contains the parameter y and message M3
contains the parameters z1 and z2. The first message M1 the mobile phone reads
with some delay, and we introduce decision variable delay , which is between 0
and 100 milliseconds.

10 : 00 : 00.000 M1{} 10 : 00 : 01.600 M3{z1 = 1, z2 = aaba}
10 : 00 : 00.080 M2{y = 80} 10 : 00 : 01.920 M3{z1 = 2, z2 = abab}
10 : 00 : 00.400 M3{z1 = 1, z2 = aaba} 10 : 00 : 02.900 M1{}
10 : 00 : 00.720 M3{z1 = 2, z2 = abab} 10 : 00 : 03.120 M3{z1 = 1, z2 = aaba}
10 : 00 : 01.040 M3{z1 = 4, z2 = aaaa} 10 : 00 : 03.440 M3{z1 = 2, z2 = abab}
10 : 00 : 01.450 M1{} 10 : 00 : 04.350 M1{}
10 : 00 : 01.580 M2{y = 320}

Fig. 1. Sequence of messages in a log

We introduce three arrays of parameters M1Time, M2Time and M3Time that
represent timestamps in milliseconds since the beginning of the log of corre-
sponding messages in the log. In this example they will have the values

M1Time = [0, 1450, 2900, 4350]
M2Time = [80, 1580]
M3Time = [400, 720, 1040, 1600, 1920, 3120, 3440]

In the example the parameter y can take two values and parameters z1 and z2
can take four values. We introduce three arrays of parameters M2y, M3z1 and
M3z2 which represent content of the messages in the log. In this example they
will have the values

M2y = [1, 2]
M3z1 = [1, 2, 4, 1, 2, 1, 2]
M3z2 = [1, 2, 4, 1, 2, 1, 2]

In the example there are two cases in the transmission of messages M3 by the
radio base station. After each message M1 the radio base station transmits several
messages M3. After a M1 message, which is transmitted within 1500 milliseconds,
the M3 messages follow with z1 equal to 1, 2, 3 and 4. After messages M1, which
are transmitted after 1500 milliseconds, the messages M3 follow with z1 equal
to 1 and 2. Between the two messages M1 should be the M3 messages with all
possible values of the parameter z1. This can be captured with the constraint

140 O. Grinchtein et al.

(∀1 ≤ i ≤ 3)
((M1Timei < 1500 − delay∧
(∀1 ≤ j ≤ 4)(∃1 ≤ k ≤ 7)M1Timei < M3Timek < M1Timei+1 ∧ M3z1k = j)
∨
(M1Timei ≥ 1500 − delay∧
(∀1 ≤ j ≤ 2)(∃1 ≤ k ≤ 7)M1Timei < M3Timek < M1Timei+1 ∧ M3z1k = j))

where two disjuncts in the constraint represent two cases of transmission of
messages M3. If disjuntcs are not satisfiable, then we have errors in the log. We
introduce the Boolean decision variable M3contentinci equal to 1 indicates an
error in the log and rewrite the constraint as

(∀1 ≤ i ≤ 3)
((M1Timei < 1500 − delay∧
(∀1 ≤ j ≤ 4)(∃1 ≤ k ≤ 7)M1Timei < M3Timek < M1Timei+1 ∧ M3z1k = j)
∨
(M1Timei ≥ 1500 − delay∧
(∀1 ≤ j ≤ 2)(∃1 ≤ k ≤ 7)M1Timei < M3Timek < M1Timei+1 ∧ M3z1k = j))

↔ M3contentinci = 0

After defining constraints we can use constraint solver to find solution by
minimising sum of Boolean decision variables in the array M3contentinc. In the
example from Figure 1, regardless of the value of delay , we have M3contentinc1 =
1, since there is no message M3 with the parameter z1 = 3 between first and
second messages M1. However, if delay = 20, then M1Time2 = 1450 < 1500−delay
and M3contentinc2 = 1, since there are no messages M3 with z1 equal to 3 and
4 between second and third messages M1. Thus, the minimum number of errors
is one, while delay is between 50 and 100. To analyse real protocol logs, we also
need to define constraints on timestamps and content of messages, but they are
more complex. We present such a constraint model in Section 5.

4 Public Warning System for LTE

In our case study we use a constraint solver to test a part of Public Warning
System (PWS). The Public Warning System is a technology that broadcasts
Warning Notifications to multiple users in case of disasters or other emergencies.

4.1 E-UTRAN Architecture

LTE (Long Term Evolution) [1] is the global standard for the fourth generation
of mobile networks (4G). Radio Access of LTE is called evolved UMTS Terres-
trial Radio Access Network (E-UTRAN)[2]. A E-UTRAN consists of eNodeBs
(eNBs), which is just another name for radio base stations. Our setup consists of
an eNB, a simulated Mobility Management Entity (MME) that forwards PWS
messages to the eNB, and some simulated User Equipment (UE). The functions
of these entities are described in more detail below.

A Constraint Optimisation Model for Analysis 141

Fig. 2. E-UTRAN architecture [2]

An eNB connects to User Equipment via the air interface. The eNBs may
be interconnected with each other by means of the X2 interface. The eNBs are
also connected by means of the S1 interface to the EPC (Evolved Packet Core),
more specifically to the MME (Mobility Management Entity) by means of the
S1-MME interface, and to the Serving Gateway (S-GW) by means of the S1-
U interface [13]. The MME performs mobility management; security control;
distribution of paging messages; ciphering and integrity protection of signaling;
and provides support for PWS message transmission. S-GW is responsible for
packet routing and forwarding. The functions of eNBs include radio resource
management; IP header compression and encryption, selection of MME at UE
attachment; routing of user plane data towards S-GW; scheduling and trans-
mission of paging messages and broadcast information; and measurement and
reporting configuration for mobility and scheduling [1]. An eNB is responsible
for the scheduling and transmission of PWS messages received from MME.

4.2 The Earthquake and Tsunami Warning System

The earthquake and Tsunami warning system (ETWS) is a part of PWS that
delivers Primary and Secondary Warning Notifications to the UEs within an
area where Warning Notifications are broadcast [3]. We show in Figure 3 the
network structure of PWS architecture.

UE

LTE-Uu

eNodeB

S1-MME

MME CBC CBE

SBc

Fig. 3. PWS architecture [14]

142 O. Grinchtein et al.

The Cell broadcast Entity (CBE) can be located at the content provider and
sends messages to the Cell Broadcast Center. The Cell Broadcast Center (CBC)
is part of EPC and connected to the MME.

P
a
g
P
N

1
,1

P
a
g
L
o
g
1

P
a
g
P
N

1
,2

P
a
g
L
o
g
2

P
a
g
P
N

1
,3

P
a
g
L
o
g
3

dPC dPCdelay

P
a
g
S
N

1
,1

P
a
g
L
o
g
1

P
a
g
S
N

1
,2

P
a
g
L
o
g
4

P
a
g
S
N

1
,3

P
a
g
L
o
g
5

P
a
g
S
N

1
,4

P
a
g
L
o
g
6

a b adelay

S
I
B
1
T
i
m
e
L
o
g
1

S
I
B
1
T
i
m
e
L
o
g
2

S
I
B
1
T
i
m
e
L
o
g
3

S
I
B
1
T
i
m
e
L
o
g
4

S
I
B
1
T
i
m
e
L
o
g
5

S
I
B
1
T
i
m
e
L
o
g
6

S
I
B
1
0
T
i
m
e
L
o
g
1

S
I
B
1
0
T
i
m
e
L
o
g
2

S
I
B
1
1
T
i
m
e
L
o
g
1

S
I
B
1
1
T
i
m
e
L
o
g
2

S
I
B
1
1
T
i
m
e
L
o
g
3

S
I
B
1
1
T
i
m
e
L
o
g
4

S
I
B
1
1
T
i
m
e
L
o
g
5

S
I
B
1
1
T
i
m
e
L
o
g
6

Fig. 4. An example of acquiring primary and secondary notification messages by UE

A Constraint Optimisation Model for Analysis 143

Table 1. Parameters and decision variables in the models

delay Time difference between time when eNB starts to trans-
mit primary notification and/or secondary notification
and the time when UE reads first paging message.

nPrim Number of primary notifications.

delayPN An array of timestamps of primary notifications. The size
of the array is nPrim.

nSec Number of secondary notifications.

delaySN An array of timestamps of secondary notifications. The
size of the array is nSec.

dPC The length of a paging cycle.

ndPC The number of paging cycles, which is configured in eNB.

PagPN An array of timestamps of paging messages of primary
notification. The size of the array is ndPC · nPrim

nBR An array of NumberofBroadcastRequested + 1 of sec-
ondary notifications. The size of the array is nSec.

nBRmax Maximum number in array nBR.

PagSN An array of timestamps of paging messages of secondary
notifications. The size of the array is nBRmax · nSec.

PagLog An array of timestamps of paging messages from the log.
The size of the array is nPagLog.

rPer An array of lengths of repetition periods. The size of the
array is nSec.

SIB1TimeLog An array of timestamps of SIB1 messages from the log.
The size of the array is nSIB1Log.

SIB1TypeLog An array of values from 0 to 3 that indicate whether SIB1
messages contain schedulingInfoList for SIB10 and/or
SIB11 messages. The size of the array is nSIB1Log.

SIB10TimeLog An array of timestamps of System Information mes-
sages with SIB10 from the log. The size of the array is
nSIB10Log

SIB11TimeLog An array of timestamps of System Information mes-
sages with SIB11 from the log. The size of the array is
nSIB11Log.

siPerSIB10 Periodicity of SIB10.

siPerSIB11 Periodicity of SIB11.

nSeg An array of number of segments in secondary notifica-
tions.

144 O. Grinchtein et al.

The CBE sends emergency information to the CBC. The CBC identifies
which MMEs need to be contacted and sends a Write-Replace Warning Request
message containing the warning message to be broadcast to the MMEs. The
MME sends a Write-Replace Warning Confirm message that indicates to the
CBC that the MME has started to distribute the warning message to eNBs. The
MME forwards Write-Replace Warning Request to eNBs in the delivery area.
The eNB determines the cells in which the message is to be broadcast based on
information received from MME [14]. If a Warning Type IE (information ele-
ment) is included in a Write-Replace Warning Request message, then the eNB
broadcasts a Primary Notification. If Warning Message Contents IE is included in
a Write-Replace Warning Request message, then the eNB schedules a broadcast
of the warning message according to the value of Repetition Period IE (rPer)
and Number of Broadcasts Requested IE (NumberofBroadcastRequested) [15].
To inform a UE about the presence of an ETWS primary notification and/or
ETWS secondary notification, a paging message is used. A UE attempts to read
paging messages at least once every defaultPagingCycle (dPC). If a UE receives
a Paging message including an ETWS-indication, then it starts receiving ETWS
primary notification or ETWS secondary notification according to scheduling-
InfoList contained in SystemInformationBlockType1 (SIB1). ETWS primary
notification is contained in SystemInformationBlockType10 (SIB10) and ETWS
secondary notification is contained in SystemInformationBlockType11 (SIB11).
The messages SIB10 and SIB11 are transmitted in System Information (SI)
messages with different periodicity. If a secondary notification contains a large
message, then it is divided into several segments, which are transmitted in Sys-
tem Information messages.

In Table 1 we present a description of some parameters that are constants
and decision variables used in models. Parameters, which represent the content
of SIB10 and SIB11 messages, are omitted. In Figure 4 we show an example of a
correct reception of paging messages, SIB1, SIB10 and SIB11 messages of the first
warning message by UE, where a = (rPer1/dPC
 + 1) · dPC, 	rPer1/dPC
 is the
number of whole paging cycles during a repetition period, b = 	rPer1/dPC
 · dPC ,
ndPC = 3,nBR1 = 4andnSeg1 = 2.Horizontal lines inFigure 4 represent timelines.
The first timeline is used to represent timestamps of paging messages of primary
notification, and the second timeline is used to represent timestamps of pagingmes-
sages of secondary notification. Vertical lines in first and second timelines represent
timestamps of paging messages; vertical lines in the third timeline represent times-
tamps of SIB1 messages; rectangles in the fourth timeline represent timestamps of
SIB10messages; and rectangles in the fifth timeline represent timestamps of SIB11
messages. Unfilled and filled rectangles in the fifth timeline indicate two different
message segments.

4.3 Replacement of Warning Messages

If a warning message is being broadcast in a certain area and the eNB receives a
Write-Replace Warning Request message with an identity which is different from

A Constraint Optimisation Model for Analysis 145

W
a
rn

in
g

m
es

sa
g
e

1

P
ri

m
S
ec

W
a
rn

in
g

m
es

sa
g
e

2

P
ri

m

W
a
rn

in
g

m
es

sa
g
e

3

S
ec

W
a
rn

in
g

m
es

sa
g
e

4

S
ec

W
a
rn

in
g

m
es

sa
g
e

5

P
ri

m
S
ec

delayPN2 delaySN2
delaySN3

delayPN3

delaySN4

(a) Transmission of Write-Replace Warning Request messages by
MME to eNB. Different shapes on the top of the vertical lines rep-
resent different warning messages.

S
I
B
1
0

S
I
B
1
1

(b) Transmission of primary and secondary notifications for each warning mes-
sage by eNB to UE. A shape on top (bottom) of a rectangle shows to which
warning message SIB10 (SIB11) message corresponds.

Fig. 5. Replacement of Write-Replace Warning Request messages

the warning messages being broadcast, the eNB schedules the received warn-
ing message for broadcast for that area. Figure 5 illustrates the replacement of
warning messages. Figure 5(a) shows timestamps of five Write-Replace Warning
request messages (Warning message 1-5) which contain the content of primary
notifications (Prim) and/or secondary notifications (Sec). For example Warn-
ing message 1 contains the content of primary and secondary notifications and
Warning message 2 contains the content of primary notification. The horizontal
line is the timeline and vertical lines represent timestamps of warning messages.
Warning message 2 is received by eNB delayPN2 milliseconds after Warning
message 1 was received. Warning message 5 is received delayPN3 = delaySN4
milliseconds after Warning message 1 is received. In Figure 5(b) vertical rect-
angles represent timestamps of SIB10 and SIB11 messages which eNB transmit
to UE. It can happen that SIB10 (SIB11) messages from a previous warning
message continues to transmit after the new warning message is received, if the
new message does not contain a content of primary (secondary) notification. For
example, when Warning message 2 is received, eNB continues transmit SIB11
messages from Warning message 1 and start to transmit new SIB10 messages.

146 O. Grinchtein et al.

5 Modelling of ETWS Notification Acquisition by UE

Our goal is to analyse a UE protocol log that contains paging messages, SIB1,
SIB10, and SIB11 messages. We defined a Model that consists of constraints on
timestamps and the content of these messages. We divided the Model into three
submodels, each of them checks for different information in a protocol log. Some
constraints appear in all submodels. The division into submodels was made in
order to reduce complexity of the overall model and is useful for a quick check of
partial information in case when Model takes a long time to solve. The submodels
are

– PagingModel that checks that the log contains all required paging messages,
and that the number and timestamps of paging messages are correct

– SIB1Model that checks that the log contains all required SIB1 messages, and
that the schedulingInfoList is correct

– PrimSecModel checks that the log contains SIB10 messages with correct
timestamps, content and identity numbers. It also checks that SIB11 mes-
sages have correct timestamps, content, segments and identity numbers.

The recommended values for dPC, siPerSIB10, siPerSIB11 and rPer satisfy
constraints dPC > siPerSIB10, rPer > siPerSIB11 and rPer > dPC, which we
assume in all our models. Other values are possible, but would require different
testing strategies. We also assume that the first message in the log is a paging
message and we assign value 0 to PagLog1. We assign to the array SIB10TimeLog
of timestamps of SIB10 messages, and to the array SIB11TimeLog of timestamps
of SIB11 messages values, which are time differences between timestamps of the
messages in the log and the timestamp of the first paging message in the log. The
main ingredient of the model is delay , which is an integer decision variable in
the model that can be between 0 and dPC. It represents the delay of first paging
message. We use binary search as a search strategy for delay . We use arrays of
Boolean decision variables which are equal to 1 if the corresponding constraints
are unsatisfiable. Then we search for a solution that minimises objective that is
the sum of the Boolean variables.

5.1 Delays of Warning Messages as Decision Variables

The arrays delayPN and delaySN represent timestamps of warning messages sent
to eNB by a MME. Since these timestamps are constant and some variable delay
can occur, we introduce arrays of decision variables delayPN50 and delaySN50
which represent extra delay of warning messages. We assume that delays are less
than 50 milliseconds.

Simply introducing a decision variable between 0 and 50 as an extra delay will
increase complexity of the problem drastically. When there is extra delay some
paging messages, SIB1, SIB10 and SIB11 could belong to the previous warning
message.Thus, we can set values to extra delay delayPN50 i by calculating dis-
tances between timestamps of SIB1, SIB10 and SIB11 messages and timestamp

A Constraint Optimisation Model for Analysis 147

delay

P
a
g
L
o
g
1

S
I
B
1
0
T
i
m
e
L
o
g
5

SIB10TimeLog5

delayPN2

50

delayPN50 2

Fig. 6. Illustration of setdelayPN50(2, nSIB10Log, SIB10TimeLog)

of ith warning message and choose distance with less than 50 milliseconds as a
value for delayPN50 i. We constrain delayPN50 by expression:

(∀1 ≤ i ≤ nPrim)
(delayPN50 i = 0
∨
(dPC − ((delayPNi − delay) mod dPC) < 50∧

delayPN50 i = dPC − ((delayPNi − delay) mod dPC) + 1)
∨
setdelayPN50(i, nSIB1Log, SIB1TimeLog)
∨
setdelayPN50(i, nSIB10Log, SIB10TimeLog)
∨
setdelayPN50(i, nSIB11Log, SIB11TimeLog)) (1)

where
setdelayPN50(i, k, TimeLog) =
(∃1 ≤ j ≤ k)

(0 ≤ TimeLogj − delayPNi + delay < 50∧
delayPN50 i = TimeLogj − delayPNi + delay + 1) (2)

Figure 6 shows illustration of setdelayPN50(2, nSIB10Log, SIB10TimeLog),
where delayPN50 2 = SIB10TimeLog5 − delayPN2 + delay + 1.

The array delaySN50 is defined in a similar way. Then we replace in the model
delayPNi by delayPNi+delayPN50 i and delaySNi by delaySNi+delaySN50 i. We
have a constraint to guarantee that if delayPNi = delaySNj then delayPN50 i =
delaySN50 j , 1 ≤ i ≤ nPrim and 1 ≤ j ≤ nSec .

5.2 Modeling of Timestamps of Paging Messages

The first timeline in Figure 4 shows timestamps of paging messages, which are
part of transmission of primary notification and the second timeline shows times-
tamps of paging messages, which correspond to secondary notification. Since pag-
ing messages of primary and secondary notifications look identical in the logs,

148 O. Grinchtein et al.

we introduce one array PagLog of timestamps of paging messages from the log,
which contain timestamps of paging messages of primary and secondary notifica-
tions in the order as they appear in the log. However paging messages of primary
and secondary notifications have different periodicity and we need to distinguish
them in order to check correctness of messages in the log. Periodicity of paging
messages of primary notifications is dPC, but the time difference between two
consecutive paging messages of secondary notification depends on the repetition
period of notification and can take two different values for the same notification
as shown in Figure 4. On the other hand, if there are more paging messages in the
log than there should be or there are other errors in paging messages in the log,
SIB10 and SIB11 messages can still be correct, but we cannot use timestamps
of paging messages from the log. Therefore we introduce the array of correct
timestamps of paging messages of primary notification PagPN and the array
of correct timestamps of secondary notification PagSN . We post constraints on
these arrays which calculate periodicity of paging messages. These constraints
appear in all models.

5.3 Description of the PagingModel

We check that all required paging messages of primary and secondary notifi-
cations are present in the log. We check that every paging message in the log
is a paging message of primary notification or paging message of a secondary
notification.

5.4 Description of the SIB1Model

We have several constraints to check the timing and content of SIB1 messages.
The constraint (3) is an example of constraint, that checks the correctness of
messages. In (3) we check that if the SIB1 message is between the first paging
message of primary notification and the last paging message of primary notifica-
tion, then it contains scheduling information for SIB10. The array SIB1TimeLog
contains timestamps of SIB1 messages in the log. SIB1TypeLog is array of val-
ues from 0 to 3 that indicates whether SIB1 contains schedulingInfoList for
SIB10 and/or SIB11. Then we post a constraint

(∀1 ≤ k ≤ nSIB1Log)(((
(∃1 ≤ i ≤ nPrim − 1)

(SIB1TimeLogk ≥ delayPNi + delayPN50 i − delay∧
((PagPN i,ndPC = −1 ∧ SIB1TimeLogk <
delayPNi+1 + delayPN50 i+1 − delay)∨
(PagPN i,ndPC �= −1 ∧ SIB1TimeLogk ≤ PagPN i,ndPC))

)
∨

(SIB1TimeLogk ≥ delayPNnPrim + delayPN50 nPrim − delay∧
SIB1TimeLogk ≤ PagPN nPrim,ndPC)

)

↔ (SIB1TypeLogk = 1 ∨ SIB1TypeLogk = 3)
)

↔ SIB1PrimTypeinck = 0 (3)

A Constraint Optimisation Model for Analysis 149

where the Boolean variable SIB1PrimTypeinck equal to 1 indicates an error in
log. Since we can assign different values to PagPN and PagSN due to unknown
value for delay , we use constraints and arrays of Boolean decision variables from
PagingModel in SIB1Model. Minimisation of sum of Boolean decision variables
from PagingModel helps reduce variations in the values of the timestamps in
PagPN and PagSN .

5.5 Description of the PrimSecModel

The model PrimSecModel checks correctness of timing and content of SIB10
and SIB11 messages in the log. For example, we check that notifications have
correct identity numbers. We also check the correctness of sequences of SIB11
segments, and that there are messages every paging cycle and repetition period.
As in SIB1Model we use constraints and arrays of Boolean decision variables
from PagingModel also in PrimSecModel.

6 Partitioning of Timestamps of Messages

If the log is large and contains for example 1000 SIB10 messages, then we can
have many constraints of the form

(∀1 ≤ i ≤ nPrim)(∃1 ≤ k ≤ 1000).φ(i, k) (4)

(∀1 ≤ k ≤ 1000)(∃1 ≤ i ≤ nPrim).φ′(i, k) (5)

and
(∀1 ≤ i ≤ nPrim)(∀1 ≤ j ≤ ndPC)(∃1 ≤ k ≤ 1000).φ′′(i, j, k) (6)

where k is index of SIB10 message in the log, nSIB10Log = 1000 and φ, φ′ and
φ′′ are some constraints. Even with small values for nPrim and ndPC, MiniZinc
cannot process such constraints. However, we can partition messages into classes,
where a message belongs to class i if its timestamp is between delayPNi − dPC
and delayPNi+1 + dPC, where 1 ≤ i ≤ nPrim− 1 or greater than delayPNi − dPC
if i = nPrim. It can happen that the message belongs to several classes, but it
helps to significantly reduce the size of constraint, it does not change the set of
solutions, and makes the approach practical. For example, for SIB10 messages
we can have arrays of integers fmin and fmax such that

fmin
i = min

1≤k≤nSIB10Log
{k|delayPNi −dPC ≤ SIB10TimeLogk ≤ delayPNi+1 +dPC},

where 1 ≤ i ≤ nPrim − 1 and

fmin
nPrim = min

1≤k≤nSIB10Log
{k|SIB10TimeLogk ≥ delayPNnPrim − dPC}

fmax
i = max

1≤k≤nSIB10Log
{k|delayPNi−dPC ≤ SIB10TimeLogk ≤ delayPNi+1+dPC},

where 1 ≤ i ≤ nPrim − 1 and fmax
nPrim = nSIB10Log.

150 O. Grinchtein et al.

Since delayPN, SIB10TimeLog and dPC are constants, we can easily calculate
fmin and fmax and rewrite (4) as

(∀1 ≤ i ≤ nPrim)(∃fmin
i ≤ k ≤ fmax

i).φ(i, k) (7)

Similary, we can define arrays of integers gmin and gmax and more complex
arrays of integers γmin

i,j and γmax
i,j and rewrite (5) as

(∀1 ≤ k ≤ 1000)(∃gmin
k ≤ i ≤ gmax

k).φ′(i, k) (8)

and (6) as

(∀1 ≤ i ≤ nPrim)(∀1 ≤ j ≤ ndPC)(∃γmin
i,j ≤ k ≤ γmax

i,j).φ′′(i, j, k) (9)

Similar calculations have been done for paging messages, SIB1 and SIB11 mes-
sages.

7 Experiments

We used our constraint model to find errors in real logs, and generated logs of
different size with injected errors. The experiments were done on the computer
equipped with 8GB RAM and an Intel Core i5-3210M processor (2.50GHz).

7.1 Analysis of Real Logs

We analysed nine real logs, which were documented and were in an internal
archive of Ericsson. Each log was captured in a UE simulator after sending two
Write-Replace Warning Request messages from a MME simulator to an eNB.
The logs have different structures, and represent all possible combinations of pri-
mary and secondary notifications in case of two warning messages. For example,
the first warning message contains primary and secondary notifications, and the
second warning message contains primary notifications; or another example, the
first warning message contains secondary notifications, and the second warning
message contains secondary notifications. Nine combinations are possible in case
of two warning messages. The size of logs is between 138KB and 578KB. The
number of paging messages is between 8 and 26, the number of SIB1 messages
is between 8 and 26, the number of SIB10 messages is between 0 and 75, and
the number of SIB11 messages is between 0 and 24.

The running time for the Model was a few seconds for each log, and the
found objective was between 0 and 70. The optimisation as presented in Section
6 was not needed. Eight logs have the property that the Boolean decision vari-
ables, which have value 1 in optimal solution, have the same value in all other
solutions. Thus, the found errors are present in all solutions for different values
of delay . This was checked by adding to the model a constraint with negated
conjunction of values of non-zero Boolean decision variables of optimal solution,
then MiniZinc reported that the model is unsatisfiable. One log does not have
such property, but it has the property that there is only one solution with the
value of objective being optimal, and the difference between other solutions and
optimal solution is at least 6 errors.

A Constraint Optimisation Model for Analysis 151

Table 2. Analysis of correct generated logs

log1 log2 log3 log4 log5

nPrim 30 25 20 15 10

nSec 30 25 20 15 10

P
a
g
i
n
g
M
o
d
e
l

nPagLog 625 510 419 307 218

time 0:03:59 0:02:39 0:00:22 0:00:11 0:00:07

time,gecode 0:00:04 0:00:02 0:00:02 0:00:01 0:00:01

objective 0 0 0 0 0

S
I
B
1
M
o
d
e
l

nSIB1Log 625 510 419 307 218

time 0:04:21 0:02:56 0:00:42 0:00:21 0:00:11

time,gecode 0:00:04 0:00:03 0:00:02 0:00:01 0:00:01

objective 0 0 0 0 0

P
r
i
m
S
e
c
M
o
d
e
l

nSIB10Log 3062 2628 2091 1435 1057

nSIB11Log 2753 2209 1500 1052 867

time 0:16:47 0:12:46 0:03:49 0:02:13 0:01:27

time,gecode 0:00:05 0:00:03 0:00:02 0:00:02 0:00:01

objective 0 0 0 0 0

M
o
d
e
l

time 0:20:59 0:14:31 0:04:46 0:02:45 0:01:43

time,gecode 0:00:05 0:00:04 0:00:03 0:00:02 0:00:02

objective 0 0 0 0 0

7.2 Analysis of Generated Logs

We generated logs, with and without errors, in order to understand how the
model scales. The generation of protocol logs was described in [12] where SICS-
tus Prolog [16] was used as constraint solver. We extended the approach and used
Gecode[17] and C++ for log generation. Note that this was not a pure constraint
model, but it included some imperative pre and post processing steps.

Table 2 shows results of the analysis of generated correct logs, where the
found objective is 0. The optimization presented in Section 6 was used. The total
time includes translation of models to FlatZinc using mzn-gecode and execution
time of Gecode on the compiled FlatZinc using fzn-gecode. We can see that a
very large log with 625 paging messages, 625 SIB1 messages, 625 SIB10 messages,
3062 SIB10 messages, and 2753 SIB11 messages requires 21 minutes to compile
to FlatZinc. While fzn-gecode found the solution in a few seconds. A log that is
three times smaller containing 10 primary and 10 secondary notifications requires
2 minutes to compile to FlatZinc and only 2 seconds to find solution.

In Table 3 we present the results of the analysis of generated logs where errors
were introduced. All logs in Table 3 are incorrect versions of Log6. The Log7
to Log15 were generated by changing the timestamp of messages (t), removing
messages (r), adding extra messages (a) and changing the content of messages
(c). In Log7 and Log8 some paging messages are not correct. In Log9 and Log10
some SIB1 messages are not correct. In Log11 and Log12 some SIB10 messages

152 O. Grinchtein et al.

Table 3. Analysis of generated logs with injected errors

log6 log7 log8 log9 log10 log11 log12 log13 log14 log15

nPrim 20

nSec 20

errors r,a t r,c t,c r t,c r,t,c r,a,t,c r,a,t,c

in messages paging paging SIB1 SIB1 SIB10 SIB10 SIB11 all all

P
a
g
i
n
g
M
o
d
e
l

nPagLog 374 174 374 374 374 374 374 374 374 398

time 0:00:23 0:00:27 0:01:23 0:00:58 0:23:15

time,gecode 0:00:02 0:00:08 0:01:02 0:00:39 0:22:56

objective 0 413 155 192 789

S
I
B
1
M
o
d
e
l

nSIB1Log 374 374 374 75 374 374 374 374 383 473

time 0:00:39 0:00:41 0:01:30 0:01:07 0:04:23 0:01:22 0:32:16

time,gecode 0:00:02 0:00:06 0:00:50 0:00:38 0:03:44 0:00:45 0:31:33

objective 0 413 155 684 395 304 1386

P
r
i
m
S
e
c
M
o
d
e
l

nSIB10Log 1875 1916 1994 1871 1858 406 1922 1888 1683 2034

nSIB11Log 1430 1429 1429 1429 1429 1430 1429 1143 1295 1242

time 0:03:38 0:03:45 0:04:49 0:03:28 0:07:54 0:04:11 0:06:24 1:25:55

time,gecode 0:00:03 0:00:08 0:00:58 0:01:00 0:04:11 0:00:59 0:02:57 1:22:21

objective 0 413 155 220 3611 2061 4267 6789

M
o
d
e
l

time 0:05:27 0:04:48 0:06:04 0:04:42 0:08:38 0:04:22 0:08:34 0:05:14 0:07:12 1:40:13

time,gecode 0:00:03 0:00:09 0:01:04 0:00:45 0:03:40 0:01:00 0:03:46 0:01:01 0:02:46 1:35:18

objective 0 413 155 684 395 220 3611 2061 4379 7396

are not correct, and in Log13 some SIB11 messages are not correct. In Log14
and Log15 there are errors in all types of messages. It took 7 minutes to find
solution for Model of Log14, which consists of 3735 messages and 4379 errors.
This is still a good result, since in a real environment it would require more than
30 minutes to collect a log of the same order of magnitude as Log14.

However, as the analysis of Log15 shows, when there are significantly incor-
rect timestamps of messages the solving time can increase significantly. It appears
that incorrect timestamps of messages are harder for the solver to handle, since
they are appear in constraints more often.

8 Learning Delay

Constraint programming can be used to analyse small logs if some parameter is
unknown. This is often the case with logs in an archive. There was a log in the
archive, with two warning notifications, that was not well documented. There
was no information about the delay of second warning message. The warning
messages consisted of primary and secondary notifications, that is delayPN2 =
delaySN2. We estimated that delayPN2 must be less than 80 seconds. The log was
1, 5 MB and there were 23 paging messages, 183 SIB10 messages and 40 SIB11

A Constraint Optimisation Model for Analysis 153

messages in the log. We used delayPN2 as decision variable in PagingModel. It
took one second for constraint solver to find a solution with the objective being
0. That is it found a value of delayPN2 such that all paging messages in log are
correct. We used the generated value of delayPN2 in Model and got a solution
after 9 seconds with the objective strictly greater than 0. We also used delayPN2
as a decision variable in Model and got a solution after 6 minutes with the same
objective value.

9 Conclusion

There are a number of advantages of using MiniZinc and constraint program-
ming: it was easy to translate the required parts of the telecommunication specifi-
cation [3] directly into MiniZinc; these MiniZinc specifications are automatically
translated into a constraint program that can be used to test protocol logs for
correctness directly; the MiniZinc specification is a declarative specification of
the protocol behaviour rather than the procedural implementation that is usually
used for implementation of the checker; and finally adding more functionality to
the MiniZinc implementation is done by simply adding more constraints.

Constraint solvers can easily handle complex requirements on timestamps.
We used the MiniZinc model to analyse real logs and also larger generated logs
with a lot of errors, which shows its usability in practice. The constraint solver
was able to handle big domains of parameters, and we do not need to reduce
or scale the domains. Protocol log analysis with constraint programming can be
a part of test automation and can be useful for functional testing as well as in
regression testing. Further, we believe that the protocol itself has independent
interest as a useful case study for other formal modelling approaches. As a future
work we plan to apply the approach to other case studies and protocols.

Acknowledgments. The authors would like to thank Noric Couderc for fruitful dis-
cussions on protocol log generation with Gecode. The first author is supported by VIN-
NMER Program 2011-03229 funded by Swedish Governmental Agency for Innovation
Systems. The third author is supported by grant 2012-4908 of the Swedish Research
Council(VR).

References

1. Chadchan, S., Akki, C.: 3GPP LTE/SAE: An overview. International Journal of
Computer and Electrical Engineering 2(5), 806–814 (2010)

2. 3GPP: Evolved universal terrestrial radio access (e-utra) and evolved universal
terrestrial radio access network (e-utran); overall description; stage 2. TS 36.300,
3rd Generation Partnership Project (3GPP)

3. 3GPP: Public warning system (PWS) requirements. TS 22.268, 3rd Generation
Partnership Project (3GPP)

4. Rossi, F., van Beek, P., Walsh, T., eds.: Handbook of Constraint Programming.
Elsevier (2006)

154 O. Grinchtein et al.

5. Carlsson, M., Grinchtein, O., Pearson, J.: Protocol log analysis with constraint pro-
gramming (work in progress). In: Proceedings of the 12th International Workshop
on Satisfiability Modulo Theories, SMT, pp. 17–26 (2014)

6. Nethercote, N., Stuckey, P.J., Becket, R., Brand, S., Duck, G.J., Tack, G.R.: MiniZ-
inc: towards a standard CP modelling language. In: Bessière, C. (ed.) CP 2007.
LNCS, vol. 4741, pp. 529–543. Springer, Heidelberg (2007)

7. Mossige, M., Gotlieb, A., Meling, H.: Testing robotized paint system using con-
straint programming: an industrial case study. In: Merayo, M.G., de Oca, E.M.
(eds.) ICTSS 2014. LNCS, vol. 8763, pp. 145–160. Springer, Heidelberg (2014)

8. Mossige, M., Gotlieb, A., Meling, H.: Using CP in automatic test generation for
ABB robotics’ paint control system. In: O’Sullivan, B. (ed.) CP 2014. LNCS,
vol. 8656, pp. 25–41. Springer, Heidelberg (2014)

9. DeMilli, R., Offutt, A.J.: Constraint-based automatic test data generation. IEEE
Transactions on Software Engineering 17(9), 900–910 (1991)

10. Williams, N., Marre, B., Mouy, P., Roger, M.: PathCrawler: automatic generation
of path tests by combining static and dynamic analysis. In: Dal Cin, M., Kaâniche,
M., Pataricza, A. (eds.) EDCC 2005. LNCS, vol. 3463, pp. 281–292. Springer,
Heidelberg (2005)

11. Carlier, M., Dubois, C., Gotlieb, A.: FocalTest: a constraint programming app-
roach for property-based testing. In: Cordeiro, J., Virvou, M., Shishkov, B. (eds.)
ICSOFT 2010. CCIS, vol. 170, pp. 140–155. Springer, Heidelberg (2013)

12. Balck, K., Grinchtein, O., Pearson, J.: Model-based protocol log generation for
testing a telecommunication test harness using clp. In: DATE (2014)

13. 3GPP: General packet radio service (GPRS) enhancements for evolved universal
terrestrial radio access network (E-UTRAN) access. TS 23.401, 3rd Generation
Partnership Project (3GPP)

14. 3GPP: Technical realization of cell broadcast service (CBS). TS 23.041, 3rd Gen-
eration Partnership Project (3GPP)

15. 3GPP: Evolved universal terrestrial radio access (E-UTRA); S1 application proto-
col (S1AP). TS 36.413, 3rd Generation Partnership Project (3GPP)

16. Carlsson, M., Ottosson, G., Carlson, B.: An open-ended finite domain con-
straint solver. In: Hartel, P.H., Kuchen, H. (eds.) PLILP 1997. LNCS, vol. 1292,
pp. 191–206. Springer, Heidelberg (1997)

17. Gecode Team: Gecode: A generic constraint development environment (2006).
http://www.gecode.org

http://www.gecode.org

	A Constraint Optimisation Model for Analysis of Telecommunication Protocol Logs
	1 Introduction
	2 MiniZinc and Constraint Programming
	3 Overview of the Approach by an Example
	4 Public Warning System for LTE
	4.1 E-UTRAN Architecture
	4.2 The Earthquake and Tsunami Warning System
	4.3 Replacement of Warning Messages

	5 Modelling of ETWS Notification Acquisition by UE
	5.1 Delays of Warning Messages as Decision Variables
	5.2 Modeling of Timestamps of Paging Messages
	5.3 Description of the PagingModel
	5.4 Description of the SIB1Model
	5.5 Description of the PrimSecModel

	6 Partitioning of Timestamps of Messages
	7 Experiments
	7.1 Analysis of Real Logs
	7.2 Analysis of Generated Logs

	8 Learning Delay
	9 Conclusion
	References

