
Artificial Intelligence 241 (2016) 170–190
Contents lists available at ScienceDirect

Artificial Intelligence

www.elsevier.com/locate/artint

A parametric propagator for pairs of Sum constraints with a

discrete convexity property ✩

Jean-Noël Monette a,∗, Nicolas Beldiceanu b,∗∗, Pierre Flener a,∗∗,
Justin Pearson a,∗∗
a Uppsala University, Dept. of Information Technology, 751 05 Uppsala, Sweden
b Mines Nantes, TASC (CNRS/INRIA), 44307 Nantes, France

a r t i c l e i n f o a b s t r a c t

Article history:
Received 17 June 2015
Received in revised form 25 August 2016
Accepted 31 August 2016
Available online 14 September 2016

Keywords:
Constraint programming
Propagator
Discrete convexity

We introduce a propagator for pairs of Sum constraints, where the expressions in the sums
respect a form of convexity. This propagator is parametric and can be instantiated for
various concrete pairs, including Deviation, Spread, and the conjunction of Linear≤ and
Among. We show that despite its generality, our propagator is competitive in theory and
practice with state-of-the-art propagators.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Constraint programming (CP) is a set of techniques to model and solve combinatorial problems using a mix of inference
and search. Each constraint of the problem is associated with a propagator that performs pruning, i.e., the removal from the
search space of impossible values for the variables of the constraint.

Many combinatorial problems involve Sum constraints, along with other constraints. It is however well-known that a
propagator for a Sum constraint taken in isolation is not able to perform a lot of pruning since the estimation of the mini-
mum or maximum of a sum does not take other constraints into account. Several authors have studied how to include other
constraints (sharing some variables) in the propagator for Sum, either in particular cases (e.g., Spread [2], Deviation [3], In-

creasingSum [4], and Sum with cliques [5]), or in general (e.g., ObjectiveSum [6]).
In the present work, we focus on a parametric constraint, called TwoSums hereafter, which can be cast as∑

i∈[1,n]
f i(xi) ≤ f (1)

g ≤
∑

i∈[1,n]
gi(xi) ≤ g (2)

✩ This work was supported by grants 2011-6133 and 2012-4908 of the Swedish Research Council (VR). This paper is an invited revision of a paper which
first appeared at the 18th International Conference on Principles and Practice of Constraint Programming (CP 2013). We thank the reviewers of CP 2013 for
their constructive comments on the prior version [1] of this paper; the reviewers of this journal also greatly helped us to improve this paper.

* Principal corresponding author.

** Corresponding author.
E-mail addresses: Jean-Noel.Monette@tacton.com (J.-N. Monette), Nicolas.Beldiceanu@mines-nantes.fr (N. Beldiceanu), Pierre.Flener@it.uu.se (P. Flener),

Justin.Pearson@it.uu.se (J. Pearson).
http://dx.doi.org/10.1016/j.artint.2016.08.006
0004-3702/© 2016 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.artint.2016.08.006
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/artint
mailto:Jean-Noel.Monette@tacton.com
mailto:Nicolas.Beldiceanu@mines-nantes.fr
mailto:Pierre.Flener@it.uu.se
mailto:Justin.Pearson@it.uu.se
http://dx.doi.org/10.1016/j.artint.2016.08.006
http://crossmark.crossref.org/dialog/?doi=10.1016/j.artint.2016.08.006&domain=pdf

J.-N. Monette et al. / Artificial Intelligence 241 (2016) 170–190 171
Table 1
Several instantiations of the TwoSums constraint. For each constraint, we give the consistency achieved by the
propagator presented in this paper along with its time complexity, as well as the complexity of previously pub-
lished propagators achieving the same consistency. Here n is the number of variables, d is the size of the largest
domain, and d∪ is the size of the union of the domains. The constraint definitions are given in Section 2.

Name Consistency Complexity Specialised propagator

Linear≤ domain O(n) O(n) [10]
Linear≤ ∧ Among domain O(n · (logn + d)) O(n · (logn + d)) [9]
Linear≤ ∧ Maximum domain O(n · (logn + d)) –
Deviation bounds(Z) O(n) O(n) [3]
Spread bounds(Z) O(n · d∪) O(n logn) [11]
Lp -Norm, 0 < p < +∞ bounds(Z) O(n · d∪) –
Linear= bounds(R) O(n) O(n) [10]
Linear≤ ∧ Linear= bounds(R) O(n2) –

for any n ≥ 1. The parameters f i and gi are functions from integers to integers and the f i (respectively gi) can differ for
each i. Initially, we require f , g , and g to be constants, but Section 7 shows how to use variables instead, along with other
extensions of this constraint. As usual when describing a constraint and its propagator, we assume that all xi are distinct
variables.

Finding a solution to the conjunction of (1) and (2) is in general NP-complete as it includes as a special case the knapsack
problem (by taking f i(v) = ai · v and gi(v) = bi · v , where the ai and bi are constants). In this paper, we will discuss a large
class of functions f i and gi for which either domain consistency, bounds(Z) consistency, or bounds(R) consistency [7,8]
can be achieved in polynomial time. We present a parametric propagator for this tractable class and show how to instantiate
it for various functions f i and gi . We show that the instantiations include among others bounds(Z)-consistent propagators
for the constraints Deviation [3] and Spread [2] and a domain-consistent propagator for the conjunction of Linear≤ and
Among [9].

While the worst-case time complexity of our parametric propagator is O(n ·d2 +n2 ·d), where d is the size of the largest
domain,1 our propagator, once instantiated, matches the theoretical time complexity and practical efficiency of several pre-
viously published specialised propagators, as shown in Table 1. However, our propagator is not limited to the reproduction
of existing propagators. Table 1 also lists the time complexity and consistency for several instantiations that we identified
as being useful general cases but for which, to the best of our knowledge, no propagator existed. This list is not exhaus-
tive and one can add many problem-specific instantiations: see for instance Example 3. Note that while achieving domain
consistency on the knapsack problem is NP-hard, bounds(R) consistency is achieved in polynomial time by our propagator
(last line in Table 1).

After introducing some notation and background in Section 2, we present our TwoSums propagator in Sections 3 to 5.
We study its complexity in Section 6 and give some implementation notes. In Section 7, we show how the applicability of
the propagator can be extended. Afterwards, we present in Section 8 several instantiations of the propagator, including a
detailed case study for Deviation. Finally, Section 9 presents some experimental results showing that the genericity of our
approach is not detrimental to performance. We review the related work in Section 10 before concluding in Section 11.

This paper is an extended version of [1], expanded with new examples, proofs, and implementation notes.

2. Notation and background

For a function f and value v , we write f −1(v) for the set of values having v as image: {u | f (u) = v}. For a function
f and set S , we write f (S) for the set of images of the elements of S: { f (u) | u ∈ S}. We use xi , vi , f i to represent single
variables, values, and functions, while x, v, f represent vectors of variables, values, and functions (e.g., x = 〈x1, x2, . . . , xn〉).

Constraint programming (CP) is a set of techniques to model and solve problems defined by a set of existentially quan-
tified variables and a set of constraints over those variables. During the solution process, each variable x is associated with
a current domain, denoted Dx , of candidate values for this variable. Each variable is given an initial domain in the model.
The smallest and largest values of Dx are denoted respectively min(Dx) and max(Dx). For a constraint c and the variables x
involved in c, an assignment of values vi ∈ Dxi , for all xi ∈ x, is called a solution to c if the vector v of values satisfies c.

One of the main operations in CP-style constraint solving is the filtering of the domain of a variable with respect to
a constraint: values that can be proven not to belong to any solution of a constraint c (given the domains of the other
variables) are removed from the domain of each variable. This is performed by an algorithm called a propagator of c.

A propagator does not need to remove all values that do not participate in any solution, as doing so can be computa-
tionally too expensive. If a propagator removes all such values, then it is said to enforce domain consistency. If a propagator
always enforces domain consistency, then it is called domain consistent. Weaker notions of consistency exist. In particular,
bounds(Z) consistency (see, e.g., [7,8]) is achieved if, for each variable x, both min(Dx) and max(Dx) belong to a solution
in which the other variables take supporting integer values within their domain bounds. If a propagator always enforces

1 The precise expression of the time complexity also depends on several other parameters introduced later and is detailed in Section 6.

172 J.-N. Monette et al. / Artificial Intelligence 241 (2016) 170–190
bounds(Z) consistency, then it is called bounds(Z) consistent. Similarly, bounds(R) consistency (see also, e.g., [7,8]) is achieved
if, for each variable x, both min(Dx) and max(Dx) belong to a solution in which the other variables take supporting real
values within their domain bounds. Bounds(R) consistency is weaker than bounds(Z) consistency in that it considers that
supporting values need not be integers. Bounds(R) consistency is the consistency usually considered for the implementa-
tion of propagators for Linear constraints. If a propagator always enforces bounds(R) consistency, then it is called bounds(R)

consistent.
In this work, we make the distinction between the Sum constraint and the Linear constraints. A Sum constraint is any

constraint
∑

i∈[1,n] f i(xi) # y, for any functions f i from integers to integers, with # ∈ {<, ≤, =, �=, ≥, >}, and y being an
integer variable or constant. The f i in the Sum constraint may be instantiated to give rise to many existing constraints. In
particular, Linear≤(x, a, s) holds if and only if the weighted sum of variables xi with given integer weights ai is at most the
integer variable s, i.e.,

∑
i∈[1,n] ai · xi ≤ s. Similarly, Linear=(x, a, s) holds if and only if the weighted sum of variables xi with

given integer weights ai is equal to the integer variable s, i.e.,
∑

i∈[1,n] ai · xi = s. These constraints have been studied among
others in [10] where many practical improvements of the usual O(n) bounds(R)-consistent propagator are introduced. In
the case of Linear≤ , bounds(R) consistency coincides with domain consistency.

The Spread(x, μ, s) constraint [2] holds if and only if the average of the integer variables xi is the given rational number
μ and the sum of their scaled squared deviations from μ is less than or equal to the integer variable s, i.e.,

∑
i∈[1,n] xi =

n · μ ∧ ∑
i∈[1,n] (n · xi − n · μ)2 ≤ s. While a generalised constraint with a variable average exists [2], we consider here only

the case of a fixed average, which is used in most applications. Following [2], all values in the second inequality are scaled
by n to work with integer values, as in general the average μ might not be integer but n · μ surely is. An O(n · log n)

bounds(Z)-consistent propagator for Spread has been introduced in [11].
Similarly, the Deviation(x, μ, d) constraint [3] holds if and only if the average of the integer variables xi is the

given rational number μ and the sum of their scaled deviations from μ is less than or equal to the integer vari-
able d, i.e.,

∑
i∈[1,n] xi = n · μ ∧ ∑

i∈[1,n] |n · xi − n · μ| ≤ d. Again, we consider only the case of a fixed average. An O(n)

bounds(Z)-consistent propagator for Deviation has been presented in [3].
The constraint Lp -Norm(x, μ, d), with 0 < p < +∞ holds if and only if

∑
i∈[1,n] xi = n · μ ∧ ∑

i∈[1,n] |n · xi − n · μ|p ≤ s. It
generalises Spread (with p = 2) and Deviation (with p = 1).

The Among(x, V, c) constraint holds if and only if the number of integer variables xi taking their value in the given
integer set V is equal to the integer variable c. The Among constraint can be represented using a Sum constraint as ∑

i∈[1,n] [xi ∈ V] = c, where the notation [γ] is the Iverson bracket and is defined to be 1 if γ is true, and 0 otherwise.
A domain-consistent propagator for the conjunction of a Linear≤ constraint and an Among constraint has been published
in [9], with an O(n · (log n + d)) time complexity, where d is the size of the largest Dxi .

3. Overview of the approach

Our approach for propagating the TwoSums constraint contains two parts. First (as discussed in Section 4), we compute
a sharp lower bound b on the left-hand side

∑
i∈[1,n] f i(xi) of constraint (1) under constraint (2), together with a support sb ,

i.e., an assignment of the xi yielding value b and satisfying constraint (2). The conjunction of (1) and (2) is feasible if and
only if this lower bound, which we call the feasibility bound, is at most f , the right-hand side of constraint (1). To compute
this feasibility bound, we introduce new functions derived from the f i and gi . We show that the feasibility bound can be
greedily computed if the newly introduced functions are discretely convex [12].

Example 1. For the conjunction of Linear≤(x, a, s) and Among(x, V, c) [9], the feasibility bound is computed by first taking
for each variable an extreme value in its domain, and then iteratively modifying the values taken by some variables until
the Among constraint is satisfied. The initial value is the largest in the domain of xi if ai < 0 and is the smallest otherwise,
so that the value of the weighted sum is as small as possible. The iterative modification picks a variable such that changing
its value causes the smallest increase to the bound. As the increase caused by a variable is independent of the values taken
by the other variables, the iteration order can be determined beforehand by sorting. Full details are provided in [9]. �

In the second part (discussed in Section 5) of our propagator for TwoSums, the domain of each variable x j is filtered
by computing for each value u in its domain a sharp lower bound on the left hand side

∑
i∈[1,n] f i(xi) of constraint (1)

under constraint (2) when x j is assigned u. If this lower bound is larger than f , then u is removed from the domain of x j .
The lower bound for each pair (x j, u) is computed incrementally from the support sb for the feasibility bound, thanks to
the discrete convexity property, and does not need to be computed explicitly for each value. We also present an improved
propagator when an additional property holds on f j and g j , namely a form of monotonicity.

Example 2. For the conjunction of Linear≤(x, a, s) and Among(x, V, c), the filtering for each variable x j amounts to com-
puting two values: the lower bound b∈

j for the weighted sum of all the other variables when variable x j is assigned a
value in V , and the lower bound b /∈

j when x j is assigned a value not in V . One of these two bounds (b∈
j if sb

j ∈ V and b /∈
j

otherwise) is directly computed from the feasibility bound b by subtracting the contribution of x j . The other bound can be
computed incrementally from the first bound by modifying the value of another variable than x j so that the modification

J.-N. Monette et al. / Artificial Intelligence 241 (2016) 170–190 173
Fig. 1. The f i functions of Example 3.

causes the smallest increase of the feasibility bound. The two new bounds are then used to remove values from the domain
of x j : the bound b∈

j is used to remove possibly values that are in V , and b /∈
j to remove possibly values that are not in V .

Again, details are provided in [9]. �
Our propagator for TwoSums is parametric, depending on the f i and gi . The time complexity and the level of consistency

achieved depend on the shape of the f i and gi and on the values given to the parameters (see Sections 6 and 7).

Example 3. Throughout the rest of the paper, we will use the following running example. Consider a workshop with n
workers. The unknown daily workload in number of hours of each worker is encoded by variable xi for each worker i ∈ [1, n].
The daily total workload must be equal to a given integer t . In addition, each worker has a given nominal workload wi ,
from which they can deviate but at some cost given by the following function: f i(v) = max{ri · (wi − v), qi · (v − wi)}, i.e.,
the cost increases linearly with a slope of ri > 0 if the actual workload is below the nominal one, and with a slope of qi > 0
if the actual workload is above the nominal one. The total cost must be under some given integer upper bound c. This part
of the problem (a typical workshop would have additional constraints) is modelled as:∑

i∈[1,n]
max{ri · (wi − xi),qi · (xi − wi)} ≤ c

t ≤
∑

i∈[1,n]
xi ≤ t

This is an instantiation of constraints (1) and (2). In subsequent examples, we will use the following values for the param-
eters: n = 4, c = 5, t = 10, w = 〈2, 3, 2, 2〉, r = 〈1, 1, 1, 2〉, and q = 〈2, 2, 3, 3〉. We also define Dxi = [0, 5] for all i ∈ [1, 4].
Fig. 1 shows the functions f i over the given domains. �
4. Feasibility test

The TwoSums constraint is satisfiable if and only if the cost (i.e., the value of the objective function) of an optimal
solution to the following problem is at most the value f :

minimise
∑

i∈[1,n]
f i(xi)

such that g ≤
∑

i∈[1,n]
gi(xi) ≤ g

xi ∈ Dxi , ∀i ∈ [1,n]

(3)

We gradually show in the next sub-sections how to compute greedily this cost, called the feasibility bound, together with a
support, which will be used for filtering in Section 5.

4.1. Problem reformulation

We reformulate problem (3) into a simpler problem in two steps. The first step introduces for each i a new function
hi that captures the relation between f i and gi . This results in having only one function per variable instead of two. The
second step splits the resulting reformulated problem into two subproblems that can be solved separately.

First step After introducing new variables yi , so that yi = gi(xi) for each i, we state the following new problem:

minimise
∑

i∈[1,n]
hi(yi)

such that g ≤
∑

i∈[1,n]
yi ≤ g

y ∈ g (D), ∀i ∈ [1,n]

(4)
i i xi

174 J.-N. Monette et al. / Artificial Intelligence 241 (2016) 170–190
where we introduce a new function hi : gi(Dxi) → f i(Dxi) for each i. This function is defined as hi(v) = min f i(g−1
i (v)) =

min{ f i(u) | u ∈ Dxi ∧ gi(u) = v}, that is hi(v) is the smallest value of f i(xi) that can be attained when gi(xi) is equal to
value v . Note that the definition of hi depends on the current domain of xi .

Example 4. In Example 3, we have gi(u) = u for all u, hence g−1
i (u) = {u}. It follows that hi(v) = f i(v), but restricted to

the current domain of xi . �
We now prove that the feasibility bound can also be computed from problem (4).

Lemma 1. All optimal solutions to problems (3) and (4) have the same cost.

Proof. Let v denote a vector of values for the vector y of variables. For each value vi , we choose an arbitrary value ui in
Dxi such that gi(ui) = vi and f i(ui) = hi(vi). Such a value ui always exists, by the definition of hi . Then the vector u is
a feasible solution to problem (3) if and only if v is a feasible solution to problem (4), and they have the same cost. In
addition, any other assignment u′ such that gi(u′

i) = vi for each i has a cost larger than or equal to the cost of u and v, by
the definition of hi . Hence u is optimal if and only if v is optimal. �
Second step We define a new function, called H , from integers to integers:

H(b) = min

⎧⎨
⎩

∑
i∈[1,n]

hi(yi)

∣∣∣∣∣∣
∑

i∈[1,n]
yi = b ∧ ∀i ∈ [1,n] : yi ∈ gi(Dxi)

⎫⎬
⎭ (5)

That is, H(b) is the minimum of the sum of the hi(yi) when the sum of the yi is equal to b. For a given integer b, we define
sb to be an assignment to y such that b = ∑

i∈[1,n] sb
i and H(b) = ∑

i∈[1,n] hi(sb
i). We call sb a support for b. We propose the

following new problem:

minimise H(z)

such that g ≤ z ≤ g
(6)

where z is a new variable. We now prove that the feasibility bound can also be computed from problem (6), as the latter
has the same optimal cost as problem (4), and as problem (3) by Lemma 1.

Lemma 2. All optimal solutions to problems (4) and (6) have the same cost.

Proof. This is shown by replacing H(z) by its definition (5) in the formulation of problem (6). This gives

min

⎧⎨
⎩min

⎧⎨
⎩

∑
i∈[1,n]

hi(yi)

∣∣∣∣∣∣
∑

i∈[1,n]
yi = z ∧ ∀i ∈ [1,n] : yi ∈ gi(Dxi)

⎫⎬
⎭

∣∣∣∣∣∣ g ≤ z ≤ g

⎫⎬
⎭

which is equal to

min

⎧⎨
⎩

∑
i∈[1,n]

hi(yi)

∣∣∣∣∣∣
∑

i∈[1,n]
yi = z ∧ ∀i ∈ [1,n] : yi ∈ gi(Dxi) ∧ g ≤ z ≤ g

⎫⎬
⎭

Substituting z by
∑

i∈[1,n] yi leads to the formulation of problem (4). �
Problems (4) and (6) are more interesting than problem (3) in three respects. First, it is simpler to reason with only one

function per variable (namely hi) instead of two (namely f i and gi). Second, the domain Dyi , which is equal to gi(Dxi),
might be much smaller than Dxi (but never larger), potentially reducing a lot the number of values the algorithms must
consider. Third, introducing H allows us to compute the feasibility bound in two steps: (i) construct H from the hi , and (ii)
find an optimal solution to (6). This can be done greedily, as we will show in Section 4.4, if all hi are discretely convex,
which is a concept we recall now.

Definition 1 ([12]). A function f : A → B , where A, B ⊆ Z, is discretely convex if

1. A is an interval, and
2. ∀v ∈ A : (v − 1) ∈ A ∧ (v + 1) ∈ A ⇒ 2 · f (v) ≤ f (v − 1) + f (v + 1).

J.-N. Monette et al. / Artificial Intelligence 241 (2016) 170–190 175
Table 2
Several instantiations of f i and gi , and the corresponding hi . The notation [γ] is the Iverson bracket and is
defined to be 1 if γ is true, and 0 otherwise.

Name f i(u) gi(u) hi(v)

Linear≤ (alone) ai · u 0

{
ai · min Dxi if ai > 0

ai · max Dxi if ai ≤ 0

Linear≤ ∧ Among [9] ai · u [u ∈ V]

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ai · min
(
Dxi \ V

)
if v = 0 ∧ ai > 0

ai · max
(
Dxi \ V

)
if v = 0 ∧ ai ≤ 0

ai · min
(
Dxi ∩ V

)
if v = 1 ∧ ai > 0

ai · max
(
Dxi ∩ V

)
if v = 1 ∧ ai ≤ 0

Linear≤ ∧ Maximum ai · u [u ≥ m]

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ai · min Dxi if v = 0 ∧ ai > 0

ai · max
{

u
∣∣ u ∈ Dxi ∧ u < m

}
if v = 0 ∧ ai ≤ 0

ai · min
{

u
∣∣ u ∈ Dxi ∧ u ≥ m

}
if v = 1 ∧ ai > 0

ai · max Dxi if v = 1 ∧ ai ≤ 0
Deviation [3] |n · u − n · μ| u |n · v − n · μ|
Spread [2] (n · u − n · μ)2 u (n · v − n · μ)2

Lp -Norm, 0 < p < +∞ |n · u − n · μ|p u |n · v − n · μ|p

Linear= 0 bi · u 0
Linear≤ ∧ Linear= ai · u bi · u ai

bi
· u

Mod_And_Div (ai > 0) u − ai · �u/ai� �u/ai� max
{

0,min Dxi − ai · v
}

The notion of discrete convexity is an adaptation of the usual convexity from the reals to the integers. The intuition is
that a function on integers is discretely convex if its natural extension to the reals is convex. This notion has been studied
in depth, for instance in [12]. It is also related to the notion of submodular functions on sets [13].

The two conditions in Definition 1 on the hi theoretically restrict the applicability of our approach. Those restrictions
and their lifting in practice are discussed further in Section 7.1 but the next example already shows the broad applicability
of our approach.

Example 5. Table 2 presents the functions f i , gi , and hi for several pairs of constraints.

• The first line shows the example of a constant gi function, i.e., gi(u) does not depend on the value of u, in which case
the domain of hi is a singleton and hi is trivially discretely convex.

• If gi is a characteristic function, i.e., a function taking only values 0 and 1 as when defined using the Iverson bracket
(e.g., Linear≤ and Among, as well as Linear≤ and Maximum), then the domain of hi is composed of only two values
and hi is typically defined by giving a formula for each value. In those cases, hi is always discretely convex.

• If gi is the identity function, as for Deviation, Spread, and Lp-Norm, then hi is equal to f i . In such a case, hi is discretely
convex as long as Dxi is relaxed to its smallest enclosing interval. As discussed in Section 7.1, this relaxation maintains
the correctness of our approach but only bounds(Z) consistency can be achieved (see Table 1).

• If gi is a linear function, as for Linear= alone and the conjunction of Linear≤ and Linear= , then hi is not discretely
convex because gi(Dxi) might not be an interval even if Dxi is an interval. However, as discussed in Section 7.1, relaxing
the domain of hi to its smallest enclosing interval maintains the correctness of our approach: as shown in Table 1, one
achieves only bounds(R) consistency.

• The last line shows the example of a pair of constraints f i and gi that are very different from the previous pairs but
still give rise to a discretely convex hi when Dxi is relaxed to its smallest enclosing interval. �

Before providing algorithms in Section 4.4 to compute the feasibility bound, we need to introduce some notions in
Section 4.2 and characterise H in Section 4.3.

4.2. Deltas, segments, slopes, and breakpoints

Let f : A → B be an arbitrary function with A, B ⊆ Z. Given some value v in A, we call right delta (respectively left delta)
the increase of f when v increases (respectively decreases) by 1. Formally: �+(f , v) = f (v + 1) − f (v) and �−(f , v) =
f (v − 1) − f (v); the value of �+(f , v) (respectively �−(f , v)) is +∞ when v + 1 (respectively v − 1) is not in A.

A segment of f is a maximal interval [�, u] of its domain where the right delta is constant. Formally: �+(f , v) =
�+(f , v + 1) for all v ∈ [�, u − 1], with � ≤ u, �+(f , � − 1) �= �+(f , �), and �+(f , u − 1) �= �+(f , u). The endpoints � and
u of a segment [�, u] of f are called breakpoints of f . The length of a segment [�, u] is u − �, that is the length of a line
from � to u, and not the number u − � + 1 of its integer elements. The slope of a segment [�, u] is �+(f , �). Hence the
slope of a function is constant inside any of its segments and changes at its breakpoints.

The domain of f can be uniquely partitioned into its segments, and each value of the domain belongs to one or two
segments. For a value v , the breakpoint on the right of v , denoted by bp+(f , v), is u if v belongs to some segment [�, u]

176 J.-N. Monette et al. / Artificial Intelligence 241 (2016) 170–190
Fig. 2. Illustration of the notions of Section 4.2. Filled points appear at breakpoints.

with u �= v , and otherwise undefined, denoted by +∞. Similarly, bp−(f , v) denotes the breakpoint on the left of v , if any,
otherwise −∞.

Let f be a discretely convex function. For any two consecutive segments, the slope of the former is smaller than the
slope of the latter, hence no two segments have the same slope. Also, �+(f , v) = +∞ only for the largest value v in A,
because A is an interval, and �−(f , v) = +∞ only for the smallest value v in A.

Fig. 2 illustrates these notions on a discretely convex function. The points are part of the actual function, while the
segments joining them are used as a visual guide to identify the segments and their slopes.

Example 6. Each function hi of Example 3 is composed of two segments (see Fig. 1). For i = 1, the function h1, defined
as h1(u) = max{1 · (2 − u), 2 · (u − 2)} over the interval [0, 5], is composed of the following two segments: one spans the
interval [0, 2] with slope −1, the other spans the interval [2, 5] with slope 2. For u ∈ [0, 1], we have �+(h1, u) = −1
and bp+(h1, u) = 2. For u ∈ [2, 4], we have �+(h1, u) = 2 and bp+(h1, u) = 5. Finally, �+(h1, 5) = +∞ and bp+(h1, 5) =
+∞. �

The basic properties of the special values +∞ and −∞ used in our algorithms are, for any v ∈ Z: −∞ < v < +∞,
v + (+∞) = +∞, v + (−∞) = −∞, v − (−∞) = +∞, v − (+∞) = −∞, min(v, +∞) = v , and v/ + ∞ = 0.

4.3. Characterisation of the H function

We will show in Section 4.4 that when the hi are discretely convex, problem (6) is easy to solve by greedy search,
because H is then also discretely convex and can be calculated efficiently. In order to prove those claims, we first need to
study closely the functions H and hi , and the relationship between them and between supports. We first show how one
can incrementally get a support for a value b + 1 from a support for a value b.

Lemma 3. If each hi is discretely convex, then given a support sb for some value b, there exists a support sb+1 for b + 1 and some
j ∈ [1, n] such that sb+1

i = sb
i for all i �= j, and sb+1

j = sb
j + 1 (assuming b and b + 1 are in the domain of H).

Proof. By definition, a support sb for any b is such that
∑

i∈[1,n] sb
i = b and

∑
i∈[1,n] hi(sb

i) = H(b). For any j and k with
k �= j, the sum

sb
1 + · · · + (sb

j + 1) + · · · + (sb
k − 1) + · · · + sb

n

also equals b as we added 1 to one value and removed 1 from another one.2 Hence by definition of H (since the sb
i are the

values that minimise H(b)), we have:

H(b) ≤ h1(sb
1) + · · · + h j(sb

j + 1) + · · · + hk(sb
k − 1) + · · · + hn(sb

n)

Rearranging and cancelling out common terms gives:

hk(sb
k) − hk(sb

k − 1) ≤ h j(sb
j + 1) − h j(sb

j) (7)

2 Visually, we here take j < k but the reasoning does not depend on their order.

J.-N. Monette et al. / Artificial Intelligence 241 (2016) 170–190 177
If h j is discretely convex, then we have that:

hk(sb
k) − hk(sb

k − 1) ≤ h j(sb
j + 1) − h j(sb

j) ≤ h j(sb
j + 2) − h j(sb

j + 1)

And:

h1(sb
1) + · · · + h j(sb

j + 1) + · · · + hk(sb
k) + · · · + hn(sb

n) ≤ h1(sb
1) + · · · + h j(sb

j + 2) + · · · + hk(sb
k − 1) + · · · + hn(sb

n)

This means that adding two to any single sb
j and reducing another sb

k by one to arrive at the sum b + 1 will have a higher
cost than simply adding one to a single sb

j . Because each hi is discretely convex, this is true for any increment larger than
one. Hence it is possible to find a support sb+1 for b + 1 from a support sb for b by increasing any suitable sb

i by one. �
Lemma 3 also shows that it is possible to find a support sb−1 by subtracting one from any suitable sb

i . We can now prove
the following important result:

Theorem 4. If each hi is discretely convex, then H is discretely convex.

Proof. The domain of each hi is an interval [si, ui], so that the domain of H is the interval
[∑

i∈[1,n] si,
∑

i∈[1,n] ui
]
. We need

to show that H(b) − H(b − 1) ≤ H(b + 1) − H(b). If sb
i is a support for some b then by Lemma 3 there are some k and j

such that H(b − 1) = h1(sb
1) + · · · + hk(sb

k − 1) + · · · + hn(sb
n) and H(b + 1) = h1(sb

1) + · · · + h j(sb
j + 1) + · · · + hn(sb

n). Therefore
H(b) − H(b −1) = hk(sb

k) −hk(sb
k −1) and H(b +1) − H(b) = h j(sb

j +1) −h j(sb
j) and, by (7), H(b) − H(b −1) ≤ H(b +1) − H(b).

Hence H is discretely convex. �
We now show how to calculate H efficiently by giving a characterisation of its minimum and its segments. Here, for any

non-empty set S and function f , the expression argmini∈S f (i) returns one arbitrary value i ∈ S that minimises f (i). In the
following, b∗ represents a value minimising the value of H(b∗).

Lemma 5. A support sb∗
for a value b∗ that minimises H is such that sb∗

i = argminvi∈gi(Dxi)
hi(vi) for all i ∈ [1, n].

Proof. If sb∗
is a support for b∗ , then b∗ is equal to

∑
i∈[1,n] sb∗

i and H(b∗) = ∑
i∈[1,n] hi(sb∗

i). Since each sb∗
i =

argminvi∈gi(Dxi)
hi(vi) corresponds to the minimum value obtainable by hi , it is not possible to reduce the value ∑

i∈[1,n] hi(sb∗
i) by picking a different value for any sb∗

i . �
There are potentially several sb∗

that minimise H . The correctness of our approach does not depend on a particular
choice of support.

Example 7. For the constraints of Example 3, there is only one value minimising hi for each i, namely the nominal workload
wi . Hence, the unique sb∗

is equal to the nominal workloads w = 〈2, 3, 2, 2〉. Then b∗ = 9 = 2 + 3 + 2 + 2 and H(b∗) = 0 as
hi(wi) = 0 for all i. �

We now characterise the segments of H . We first establish the relation between the slope of H at some value b and the
slope of each hi at sb

i .

Lemma 6. If sb is a support for some value b, then �+(hi, sb
i) ≥ �+(H, b) and �−(hi, sb

i) ≥ �−(H, b) for all i ∈ [1, n].

Proof. If b is increased by one, then one of the sb
i must be increased by one (by Lemma 3). To reach the minimum value

for b + 1, one needs to increase the value of a variable yk for which �+(hk, sb
k) is the smallest. So the increase of H , namely

�+(H, b), is equal to �+(hk, sb
k), which is smaller than or equal to �+(hi, sb

i) for any other i. A similar argument is used
for a decrease of b. �

The proof of Lemma 6 also shows that there is at least one i such that �+(hi, sb
i) is equal to �+(H, b). This gives us a

way to define the segments of H :

Lemma 7. The length of each segment of H is equal to the sum of the lengths of the segments in the functions hi with the same slope.

178 J.-N. Monette et al. / Artificial Intelligence 241 (2016) 170–190
Fig. 3. The hi and H functions of Example 8.

Proof. In the proof of Lemma 6, we saw that �+(H, b) is equal to a minimal �+(hk, sb
k). If one wants to increase b by more

than one, then the increase per unit stays constant as long as there is at least one variable with slope equal to �+(H, b).
This defines a segment of slope �+(H, b), whose length is equal to the sum of the lengths of the segments of all functions
hi with the same slope. �

We can use Lemmas 5 and 7 to construct H efficiently, as shown in the following example. Section 6.1 presents several
ways to implement this construction in practice.

Example 8. Given the domain [0, 5] for all xi , the function H for the constraints of Example 3 can be constructed as follows
(see also Fig. 3). Each hi has two segments joining at wi : the first spans [0, wi] and has slope −ri , while the second spans
[wi, 5] and has slope qi . Starting from b∗ = 9, we can define the segment of H for which b∗ is the left breakpoint using the
second segment of each hi with minimal qi . There are two of them (namely for i = 1 and i = 2) with respective lengths 3
and 2, both with slope 2. This defines a segment of length 5 and slope 2 spanning the interval [9, 14]. The next segment
has slope 3 and is constructed from the second segments of hi for i = 3 and i = 4. With a length of 6, it spans the interval
[14, 20]. The same reasoning for values smaller than 9 leads to two more segments: one spans [0, 2] with a slope of −2,
and the other one spans [2, 9] with a slope of −1. Fig. 3 shows how H is formed of the segments of the hi . �

As can be seen in the previous example, we do not compute an analytical definition of H but only its minimum and its
segments. As will be made clear in Section 6, we are never interested in the value of H(b) for an arbitrary value b but only
for b∗ and for incremental modifications of b that can be computed using the slopes of the segments.

4.4. Computing the feasibility bound and a support

We now show that problem (6) can be solved in a greedy way.

Theorem 8. Problem (6) can be solved greedily if each hi is discretely convex.

Proof. If each function hi is discretely convex, then the function H is also discretely convex (by Theorem 4) and can be
constructed from the hi (by Lemmas 5 and 7). Finding the minimum of a discretely convex function under some bound
constraints can be done greedily, as a local minimum of a discretely convex function is also a global minimum (see, e.g.,
Theorem 2.2 in [12]). �

Given the function H , problem (6) can be solved by first finding a value b minimising H (i.e., b∗), and then greedily
increasing or decreasing b if b∗ is not in [g, g]. In addition, computing a support sb is useful for the filtering (to be
discussed in Section 5).

J.-N. Monette et al. / Artificial Intelligence 241 (2016) 170–190 179
Algorithm 1 Greedy algorithm to compute a support.

Thanks to Lemma 6, this can be achieved by Algorithm 1.3 From now on, we write s to refer to sb . An assignment s that
minimises the value of H without considering the bounds for b is initially constructed (lines 2–4). If b is in [g, g], then
the initial assignment is the final one. Otherwise the assignment is iteratively modified in order to satisfy the bounds of b.
We assume b < g happens in line 5. Then some si must be increased until b is equal to g . This is done in two steps. In
lines 6–10, the segment of H where g lies is found. Its slope is stored in �max, and the distance between bp−(H, g) and g
is stored in slack. Those two values allow us to modify each si separately (lines 11–17). For each i, first si is moved from
breakpoint to breakpoint of hi while the slope of the segment is smaller than �max. Next, if the slope of the segment on the
right of si is equal to �max, then si is moved further on this segment, without exceeding the remaining slack (line 15). Lines
18–30 show the symmetrical case when b > g: the left deltas and left breakpoints are used, and slack takes on negative
values.

The algorithm returns the support s (line 31), or “null” if the constraint is unsatisfiable (lines 8 and 21), which triggers
propagator failure and happens if there exists no value in the domains of the hi such that b ∈ [g, g].

We now prove that Algorithm 1 is correct:

Theorem 9. If the hi are discretely convex and H is defined as in equation (5), then Algorithm 1 returns an optimal solution to
problem (4), and hence to problem (6), if one exists, and “null” otherwise.

Proof. If the hi are discretely convex, then H is also discretely convex (by Theorem 4) and lines 2–4 store its minimum in
variable b (using Lemma 5). If g ≤ b ≤ g, then b is feasible and we are done. Otherwise, assume b < g (the other case is
symmetrical), then by Theorem 2.2 in [12], the optimal solution is at b = g . Now, we need to find sg . We do this in two
steps. Lines 6–7 locate the segment of H where g lies. If such a segment does not exist, then g is not in the domain of H

3 Line 16 is corrected here with respect to our [1] where a sign error was present. Our implementation was correct.

180 J.-N. Monette et al. / Artificial Intelligence 241 (2016) 170–190
Table 3
Values at some steps of Algorithm 1.

Step b slack s

after initial bound 9 – 〈2,3,2,2〉
after sharp bound 10 1 〈2,3,2,2〉
after modifying s1 10 0 〈3,3,2,2〉

and “null” is returned in line 8. Otherwise, lines 9 and 10 compute the slope �max of that segment, and the distance slack
between bp−(H, g) and g . Lines 11–17 modify the value of each wi to reach g: lines 12–13 position each si at the right
breakpoint of the correct segment as defined by Lemma 6, and lines 14–17 ensure that

∑
i∈[1,n] si is equal to g . �

Example 9. We now show an execution of Algorithm 1 on the problem of our running example. Important values at some
steps of Algorithm 1 are given in Table 3. We have already shown in Example 7 that b∗ = 9, so we have b = 9 at line 4. As
b < g = 10 on line 5, the algorithm enters the conditional branch starting at line 6 with b = 9 and s = 〈2, 3, 2, 2〉. We have
that �+(H, 9) = 2 and bp+(H, 9) = 14. As 14 ≮ g = 10, line 7 is never executed. Lines 9 and 10 set �max = 2 and slack = 1.
The loop of lines 11–17 is executed for each i ∈ [1, 4]. Here, line 13 is never executed. For i = 1, the condition of line 14
is true and lines 15–17 are executed: they set s′ = min{5, 2 + 1} = 3, slack = 1 − 3 + 2 = 0, and si = 3. As the slack is now
equal to zero, no other value will be modified for i ∈ [2, 4]. The final support is s = 〈3, 3, 2, 2〉.

Note that we iterate in line 11 over the indices in increasing order. If we iterated in decreasing order, then we would
obtain s = 〈2, 4, 2, 2〉. The two assignments are both correct supports for b = 10 and H(b) = 2. The conjunction of constraints
in this example is feasible as the optimal value, namely 2, is at most the upper bound f = 5. �
5. Domain filtering

To filter the domain of a variable, we extend the reasoning presented in Section 4.1. Indeed, variable x j can take a value
u ∈ Dx j if and only if the cost of an optimal solution to the following problem is smaller than or equal to f :

minimise f j(u) +
∑

i �= j∈[1,n]
f i(xi)

such that g ≤ g j(u) +
∑

i �= j∈[1,n]
gi(xi) ≤ g

xi ∈ Dxi , ∀i �= j ∈ [1,n]

(8)

Problem (8) resembles problem (3) but x j is fixed to u. Hence we can use the same reformulation as in Section 4.1. We
introduce the following new function:

H j(b) = min

⎧⎨
⎩

∑
i �= j∈[1,n]

hi(yi)

∣∣∣∣∣∣
∑

i �= j∈[1,n]
yi = b ∧ ∀i �= j ∈ [1,n] : yi ∈ gi(Dxi)

⎫⎬
⎭

That is, H j(b) is similar to H(b) in (5) but it only uses the functions hi for i different from j. The optimal cost of problem (8)
is the optimal cost of the following new problem:

minimise f j(u) + H j(z)

such that g ≤ g j(u) + z ≤ g
(9)

where value u is given and z is the only variable. The result of the following lemma can be used to compute H j .

Lemma 10. The function H j is discretely convex if all hi are discretely convex. The value b∗
j that minimises H j is equal to the value b∗

that minimises H minus the value v∗ that minimises h j . The length of each segment of H j is equal to the length of the linear segment
of H of the same slope minus the length of the linear segment of h j of the same slope, if any.

Proof. As H and H j are defined identically except for the set of indices they consider, one can apply all results concerning
H to H j . So the first statement is a consequence of Theorem 4, replacing H by H j . In the same way, applying Lemma 5

to H j , we get s
b∗

j

i = sb∗
i for all i �= j. Hence b∗

j = b∗ − sb∗
i , which proves the second statement. Applying Lemma 7 to H j gives

that the length of each segment of H j is equal to the sum of the lengths of the segments of the same slope of the hi with
i �= j. Hence the only difference between the length of a segment of H j and the length of the segment of H of the same
slope is the length of the segment of h j with the same slope, if it exists. �

J.-N. Monette et al. / Artificial Intelligence 241 (2016) 170–190 181
Algorithm 2 Main filtering algorithm.

1: function FilterTwoSums(f, g, h, f , g, g)
2: Construct H as discussed in Section 6.1
3: s := GetSupportLowerBound

4: for all j ∈ [1, n] do
5: ForwardFilter(j)
6: BackwardFilter(j)

Example 10. Given the functions of Example 3, H1 is characterised as follows. Its minimum is at 9 − 2 = 7 and it has 4
segments spanning respectively the interval [0, 2] with slope −2, the interval [2, 7] with slope −1, the interval [7, 9] with
slope 2, and the interval [9, 15] with slope 3. Fig. 4 on page 183 illustrates the function and its use in the forthcoming
Example 11. �

Our filtering algorithm is given in Algorithm 2. It iterates over all variables and, for each variable y j , filters in turn for
the values larger than s j and for the values smaller than s j . To avoid cluttering the algorithm descriptions with numerous
parameters, we consider f, g, h, f , g, g, H , and s to be globally available. We show hereafter two ways to use H j to im-
plement ForwardFilter and BackwardFilter. The first way is applicable in general, provided H j is discretely convex. The
second way makes use of an additional property that f j and g j might have.

5.1. Filtering in the general case

As several values u of x j can have the same image v through g j , the set of values in Dx j that are consistent with
constraints (1) and (2) can be partitioned as:

⋃
v∈g j(Dx j)

{
u

∣∣∣∣∣ g j(u) = v ∧ f j(u) ≤ f − min
g≤z+v≤g

H j(z)

}

That is, for each v , we have the set of values u in g−1
j (v) such that the optimal cost of problem (9) is at most f , hence the

set of values that are feasible. The domain of x j can be made domain consistent by filtering the following unary constraint
for each value v ∈ g j(Dx j):

g j(x j) = v ⇒ f j(x j) ≤ f − min
g≤z+v≤g

H j(z) (10)

The function H j being discretely convex, one can compute ming≤z+v≤g H j(z), which is independent of any particular u,
incrementally from a value v to v + 1. In addition, if v is equal to s j , which is the value of y j in the support s computed
in Section 4.4, then

H j

⎛
⎝ ∑

i �= j∈[1,n]
si

⎞
⎠ + h j(s j) = H

⎛
⎝ ∑

i∈[1,n]
si

⎞
⎠ (11)

This leads to Algorithm 3,4 which is used to filter the domain of x j for values larger than s j . This algorithm traverses
the functions h j and H j . The only complication is that in some cases (captured by the Boolean variable decb defined in
lines 6 and 12) reaching an optimal solution to ming≤z+v≤g H j(z) involves decrementing b, which is the current value of z
(line 10). Domain filtering according to constraint (10) takes place in lines 5 and 11. We assume that the Filter procedure
to filter the domain of a variable for a unary constraint is provided by the user. The semantics of Filter(φ(x)) for some
unary predicate φ is that it removes from the domain of x all values u such that φ(u) does not hold. The algorithm ends
when the optimal cost to problem (9) for v + 1 is larger than f (line 8), at which point values of x j for which g j(x j) > v
are filtered (line 14). The description of the procedure ComputeHj on line 2 will be given in Section 6.

Algorithm 4 presents the complementary algorithm for values smaller than s j . In that case, v is iteratively decreased
while b is increased. Hence the Boolean decb is replaced by incb defined as b + v ≤ g ∨ �+(H j, b) < 0. Note that line 5 is
redundant with line 5 in Algorithm 3 but has been left for symmetry.

Theorem 11. If each hi is discretely convex, H is defined as in equation (5), s is the result of Algorithm 1, and each Filter call achieves
domain consistency on the unary constraint given as argument, then Algorithms 3 and 4 achieve domain consistency on x j .

Proof. First, we show that the value b used in each Filter call of lines 5 and 11 is

4 Line 8 is a clarification of our previously published version [1].

182 J.-N. Monette et al. / Artificial Intelligence 241 (2016) 170–190
Algorithm 3 Filtering algorithm for values larger than s j (general case).
1: function ForwardFilter(j)
2: H j := computeHj(H, h j)
3: b := ∑

i∈[1,n] si − s j

4: v := s j

5: Filter(g j(x j) = v ⇒ f j(x j) ≤ f − H j(b))
6: decb := b + v ≥ g ∨ �−(H j , b) < 0
7: valH j := if decb then H j(b − 1) else H j(b)

8: while valH j + h j(v + 1) ≤ f do
9: v := v + 1

10: if decb then b := b − 1
11: Filter(g j(x j) = v ⇒ f j(x j) ≤ f − H j(b))
12: decb := b + v ≥ g ∨ �−(H j , b) < 0
13: valH j := if decb then H j(b − 1) else H j(b)

14: Filter(g j(x j) ≤ v)

Algorithm 4 Filtering algorithm for values smaller than s j (general case).
1: function BackwardFilter(j)
2: H j := computeHj(H, h j)
3: b := ∑

i∈[1,n] si − s j

4: v := s j

5: Filter(g j(x j) = v ⇒ f j(x j) ≤ f − H j(b))
6: incb := b + v ≤ g ∨ �+(H j , b) < 0
7: valH j := if incb then H j(b + 1) else H j(b)

8: while valH j + h j(v − 1) ≤ f do
9: v := v − 1

10: if incb then b := b + 1
11: Filter(g j(x j) = v ⇒ f j(x j) ≤ f − H j(b))
12: incb := b + v ≤ g ∨ �+(H j , b) < 0
13: valH j := if incb then H j(b + 1) else H j(b)

14: Filter(g j(x j) ≥ v)

Table 4
Values at some steps of Algorithms 3 and 4, as per Example 11.

Step b v decb/incb valH j h j(v + 1)

Forward, after the initialisation 8 2 true 0 2
Forward, after one iteration 7 3 true 1 4
Forward, after two iterations 6 4 true 2 6

Backward, after the initialisation 8 2 true 4 1
Backward, after one iteration 7 3 true 7 2

argmin
g≤b+v≤g

H j(b) (12)

This is verified for the call in line 5 by equation (11) and the computed values of b and v . From now on, we only consider
the case of the values v larger than w j , i.e., Algorithm 3, the other case being symmetrical. Each iteration of the loop of
lines 8–13 increments v by 1. If b + v = g, then b must be decreased by 1 in order to satisfy the condition in expression (12)
when v is incremented. If �−(H j, b) < 0, then H j(b − 1) < H j(b). The value b − 1 is not feasible for v (as b is optimal,
meaning that b + v = g) but is feasible for v + 1, so b must be decremented in that case. In all other cases, b stays constant.
Hence, in each case, the value of b at line 11 is equal to the value of expression (12).

Second, we show that the value v in line 14 is the largest feasible value in the domain of y j . By the argument above,
b is the optimal value at each iteration of the loop. Hence the test of line 8 evaluates to false if and only if v + 1 is not
feasible. As H j is discretely convex, there is no feasible value larger than v . �

We note that domain consistency is usually easy to achieve for any unary constraint appearing in a Filter call.
In Section 7.1, we will characterise the consistency level achieved by Algorithms 3 and 4 when the hi are not discretely

convex.

Example 11. The execution of Algorithm 3 on variable x1 in the problem of Example 3 is as follows. Table 4 gives the
values of the variables appearing in the algorithm at different moments and Fig. 4 shows how the functions h j and H j

are traversed. We start from the support s = 〈2, 4, 2, 2〉 and have f = 5. The result of line 2, namely H j , was given in
Example 10. Lines 3 and 4 set b = 8 and v = 2. The Filter calls at lines 5 and 11 amount, after instantiating and simplifying
the formula, to “if max{2 − v, 2v − 4} + H j(b) > 5, then remove v from Dx1 ”. In line 5, we have H j(b) = 2, hence v = 2

J.-N. Monette et al. / Artificial Intelligence 241 (2016) 170–190 183
Fig. 4. The h1 and H1 functions used in Examples 10 and 11. The solid arrows correspond to the successive iterations of Algorithm 3. The loop ends after
two iterations as H1(5) + h1(5) = 2 + 6 = 8 > 5. The dotted arrows correspond to the successive iterations of Algorithm 4. The loop ends after one iteration
as H1(10) + h1(0) = 7 + 2 = 9 > 5.

stays in the domain. Line 6 sets decb to true. As g = g in this example, decb is always true and b will be decremented at
each iteration. The tested value in line 8 is equal to 0 + 2 = 2, which is smaller than 5, hence the loop is entered. Now, we
have v = 3, b = 7, and H j(b) = 0, and nothing is filtered by line 11. To start the next iteration, we have that the tested value
in line 8 is 1 + 4 = 5 and the body of the loop is executed again: v = 4, b = 6, H j(b) = 1, and nothing is filtered. Finally,
the tested value in line 8 becomes 2 + 6 = 8, which is larger than 5, and the loop ends. The execution of line 14 enforces
x1 ≤ v = 4, which removes 5 from Dx1 . The domain of x1 after the execution of Algorithm 3 is thus [0, 4].

The execution of Algorithm 4 is similar and illustrated with the dotted arrows in Fig. 4. The loop ends when v = 1 and
the execution of line 14 enforces x1 ≥ v = 1, which removes 0 from Dx1 . The domain of x1 after the execution of Algorithm 4
is thus [1, 4]. �
5.2. Filtering in a special case

We now present a special case that allows us to avoid useless computation, namely a form of monotonicity. Let us define
k j(v) = max f j(g−1

j (v)), that is k j(v) is the largest value f j(u) for u such that g j(u) = v . The function k j is similar to h j

but the ‘max’ operator replaces the ‘min’ one.
If h j(v) ≥ k j(v − 1) for any value v larger than v∗ = argminu∈g j(Dx j)

h j(u) and h j(v) ≥ k j(v + 1) for any v smaller
than v∗ , then there exists a value vmax such that for all values v ∈ g j(Dx j) smaller than vmax (but larger than or equal to
s j) we have that all values u ∈ g−1

j (v) are feasible, and for all v larger than vmax, there is no feasible u. We then need
not consider all values but only find vmax and filter according to the two constraints g j(x j) ≤ vmax and g j(x j) = vmax ⇒
f j(x j) ≤ f − ming≤z+vmax≤g H j(z). A similar argument holds for a similarly defined vmin.

Finding vmax amounts to computing the largest value v such that h j(v) + ming≤z+v≤g H j(z) ≤ f . As h j and H j are both
convex, this problem can be solved by incrementally increasing v until the bound is reached. Algorithm 5 presents the steps
to find vmax.5 This algorithm is very similar to Algorithm 3, but it does not need to iterate over all the values v , but only
over the ones that are at a breakpoint of h j or H j . The increment is stored in � (lines 6, 12, and 14). For conciseness, we use
if-then-else expressions inside the expressions giving the value of � in lines 6, 12, and 14. The correctness of Algorithm 5
stems from the correctness of Algorithm 3 and the fact that � is the largest increment such that the values of �+(h j, v),
�−(H j, b), and decb are constant.

An example of the special case is when g j is the identity function. Then g j is injective. Hence h j = k j and, by convexity,
h j is non-decreasing to the right of v∗ and non-increasing to the left of v∗ .

Example 12. The filtering of Example 11 can be rerun with Algorithm 5 since the functions g j are the identity function.
Table 5 gives the values of the variables appearing in the algorithm at different moments. Initially, we have v = 2, b = 8,
and � = 8 − 7 = 1, as H j has a breakpoint at b = 7. After one iteration, we have v = 3, b = 7, and � = 5 − 3 = 2, as
h j has a breakpoint at 5. At this point, the tested value in line 8 is 2 + 6 = 8, and the loop ends. Lines 14 and 15 set
� = (5 − 0 − 2)/(2 + 1) = 1 and v = 4. As in Example 11, line 16 removes all values larger than 4 (i.e., 5) from Dx1 . Line 17
does not remove anything here. Similarly, the execution of Algorithm 6 stops after one iteration and removes value 0 from
the domain of x1. �

5 Lines 6 and 12 have been corrected and line 8 is a clarification of our previously published version [1]. Our implementation was correct.

184 J.-N. Monette et al. / Artificial Intelligence 241 (2016) 170–190
Algorithm 5 Filtering algorithm for values larger than s j (special case).
1: function ForwardFilter(j)
2: H j := computeHj(H, h j)
3: b := ∑

i∈[1,n] si − s j

4: v := s j

5: decb := b + v ≥ g ∨ �−(H j , b) < 0
6: � := min

(
bp+(h j , v) − v, if decb then b − bp−(H j ,b) else g − b − v

)
7: valH j := if decb then H j(b − �) else H j(b)

8: while valH j + h j(v + �) ≤ f do
9: v := v + �

10: if decb then b := b − �

11: decb := b + v ≥ g ∨ �−(H j , b) < 0
12: � := min

(
bp+(h j , v) − v, if decb then b − bp−(H j ,b) else g − b − v

)
13: valH j := if decb then H j(b − �) else H j(b)

14: � := (f − H j(b) − h j(v))/(�+(h j , v) + (if decb then �−(H j , b) else 0))

15: v := v + �

16: Filter(g j(x j) ≤ v)
17: Filter(g j(x j) = v ⇒ f j(x j) ≤ f − H j(b))

Table 5
Values at some steps of Algorithm 5, as per Example 12.

Step b v decb � valH j h j(v − 1)

after the initialisation 8 2 true 1 0 2
after one iteration 7 3 true 2 2 6

Algorithm 6 Filtering algorithm for values smaller than s j (special case).
1: function BackwardFilter(j)
2: H j := computeHj(H, h j)
3: b := ∑

i∈[1,n] si − s j

4: v := s j

5: incb := b + v ≤ g ∨ �+(H j , b) < 0

6: � := min
(

v − bp−(h j, v), if incb then bp+(H j ,b) − b else b + v − g
)

7: valH j := if incb then H j(b + �) else H j(b)

8: while valH j + h j(v − �) ≤ f do
9: v := v − �

10: if incb then b := b + �

11: incb := b + v ≤ g ∨ �+(H j , b) < 0

12: � := min
(

v − bp−(h j , v), if incb then bp+(H j ,b) − b else b + v − g
)

13: valH j := if incb then H j(b + �) else H j(b)

14: � := (f − H j(b) − h j(v))/(�−(h j , v) + (if incb then �+(H j , b) else 0))

15: v := v − �

16: Filter(g j(x j) ≥ v)
17: Filter(g j(x j) = v ⇒ f j(x j) ≤ f − H j(b))

Algorithm 6 presents the complementary algorithm to find vmin. Again, it is very similar to Algorithm 4 but, like Algo-
rithm 5, it decreases the value of v in each step by �, which is potentially larger than 1.

6. A parametric propagator and its complexity

Our propagator is generic in the sense that it works correctly for any functions f i and gi that respect the condition of
Theorem 8. However, we call it a parametric propagator, because rather than resorting to a fully generic implementation,
we use hook functions and procedures that need to be provided. This often allows us to get a lower time complexity. The
parameters for each instantiation are shown in Table 6: they are used in Algorithms 1 to 6. We now study the time and
space complexity of our propagator, after describing some implementation strategies.

6.1. Constructing H

We represent the H function as two linked lists of segments, plus two integers for the value b∗ minimising H(b∗) and
for H(b∗) itself. For each segment, its slope and length are stored. One linked list chains all the segments to the right of
b∗ by increasing order of the slope value and is terminated by a dummy segment with slope +∞. The other linked list
chains the segments to the left of b∗ by decreasing order of the slope value and is terminated by a dummy segment with
slope −∞.

Constructing the linked lists of H , i.e., line 2 in Algorithm 2, can be implemented in various ways.

J.-N. Monette et al. / Artificial Intelligence 241 (2016) 170–190 185
Table 6
Parameters to instantiate.

Functions Procedures

argminv∈gi (Dxi)
hi(v) Filter(gi(xi) ≤ v)

minv∈gi (Dxi)
hi(v) Filter(gi(xi) ≥ v)

�+(hi , v) Filter(gi(xi) = v ⇒ f i(xi) ≤ u)

�−(hi , v)

bp+(hi , v)

bp−(hi , v)

Algorithm 7 Maintaining H(b), s, and l when incrementing b by k.
In/Out: b � The identifier b appearing in Algorithm 1
In/Out: H_b � The current value of H(b)

In/Out: s � The segment of H on which b and b + 1 lie
In/Out: � � The distance between b and the right breakpoint of s
Require: k ≤ �

1: procedure IncrementH,b (k)
2: b := b + k
3: H_b := H_b + k · �(s) � � returns the slope of the segment
4: � := � − k
5: if � = 0 then
6: s :=succ(s) � succ returns the next segment in the linked list
7: � := length(s) � length returns the length of the segment

Algorithm 8 Maintaining h j(v) when incrementing v by k.
In/Out: v � The identifier v appearing in Algorithms 3 to 6
In/Out: h j _v � The current value of h j(v)

Require: k ≤ bp+(h j , v) − v
1: procedure Incrementh j ,v (k)
2: v := v + k
3: h j _v := h j _v + k · �+(h j, v) � �+(h j, v) is a parameter to instantiate

A first way is to traverse each function hi in turn and to build H incrementally by traversing the linked lists in parallel.
This takes O(n · (s(h) · p + s(H))) time, where s(h) is the maximum number of segments among the hi functions, s(H) is
the number of segments of H , and p is the highest complexity of the parametric functions in Table 6.

A second way is to collect all the segments from all the functions in a list, to sort this list, and to construct H by
traversing the list. This takes O(n · s(h) · (p + log(n · s(h)))) time and is asymptotically better than the first way when
s(H) > s(h) · log(n · s(h)).

Although it might be interesting to construct H lazily because some parts of H might never be used, preliminary ex-
periments have shown that the construction of H takes only a very small portion of the running time so that we did not
explore this direction further.

6.2. Computing H(b), h j(v), and H j(b)

The value of H(b) is never queried for arbitrary values of b, but only for a value b∗ minimising H(b∗) and for incremen-
tally modified values of b, so that H(b) can also be computed incrementally.

The computation of H(b), �+(H, b), �−(H, b), bp+(H, b), and bp−(H, b) can be performed as follows in constant time
for all values of b used in the algorithms. Note first that in any algorithm the value of b is either only increased or only
decreased, starting from b∗ . We only discuss here the case of increasing b, the decreasing case being symmetrical. At any
point in the algorithms, instead of maintaining only the value b, we also maintain a pointer to the segment s of H in which
b and b + 1 lie (there is always a unique such segment), the distance � between b and the right breakpoint of s, and the
value of H(b).

Algorithm 7 shows how those quantities can be maintained upon incrementing b. If b is incremented by k with k ≤ �

(which is ensured in all algorithms), then H(b) is incremented by k · �(s) and � is decreased by k. If � becomes equal to 0,
then s is replaced by its successor in the linked list and � is set to the length of the new segment. The expression �+(H, b)

appearing in Algorithm 1 is equal to �(s) and bp+(H, b) can be computed as b + �.
Similarly, the value of h j(v) is only queried for sb∗

i and incrementally modified values of v . This is reflected by the
absence of h j(v) from the parameters in Table 6. As shown in Algorithm 8, the bookkeeping associated with h j is simpler
than the one of H : it suffices to maintain h j(v) using the parameter function �+(h j, v) whenever v is modified.

The approach for querying the value of H j(b) is the same as for H(b): the value of b is initialised to a value for which
H j(b) is known, and then either only increased or only decreased. Hence H j(b) and the other related quantities can be
maintained incrementally as is done for H . Using this fact and Lemma 10, we actually do not need to compute H j in line 2
of Algorithms 3 to 6. Instead, we only maintain the segment s of H j on which b and b + 1 lie (in case of increasing b). As

186 J.-N. Monette et al. / Artificial Intelligence 241 (2016) 170–190
Algorithm 9 Maintaining H j(b) and related quantities when incrementing b by k.
In/Out: b � The identifier b appearing in Algorithms 3 to 6
In/Out: H j _b � The current value of H j(b)

In/Out: d � The slope of the segment of H j on which b and b + 1 lie
In/Out: � � The distance between b and its right breakpoint in H j

In/Out: v ′ � A value such that −�−(h j , v) ≤ d ∧ �+(h j , v) > d
In/Out: s′ � The segment of H on which b + v ′ and b + v ′ + 1 lie
Require: k ≤ �

1: procedure IncrementH j ,b (k)
2: b := b + k
3: H j _b := H j _b + k · d
4: � := � − k
5: while � = 0 do
6: s′ :=succ(s′)
7: d := �(s′)
8: � := length(s′)
9: if d = �+(h j , v ′) then

10: � := � − (bp+(h j , v ′) − v ′)
11: v ′ := bp+(h j , v ′)

Table 7
Time complexity of the different versions of the propagator.

Case Construct H Time complexity

General Traversing O(n · (s(h) · p + s(H) + r(h) · c))
Sorting O(n · (s(h) · p + s(h) · log(n · s(h)) + r(h) · c))

Special Traversing O(n · (s(h) · p + s(H) + c))
Sorting O(n · (s(h) · p + s(h) · log(n · s(h)) + s(H) + c))

shown in Algorithm 9, to compute the length � and slope d of s, we also maintain a pointer to the segment s′ in H from
which the segment of H j is built and a value v ′ such that −�−(h j, v ′) ≤ �(s) < �+(h j, v ′). When we need to access the
next segment of H j (because the value � reached 0), we can construct it from the successor of s′ in H and the segment on
the right of v ′ in h j . As a segment in H might be built from a single segment of only h j , Algorithm 9 must loop while the
remaining length � is equal to zero.

6.3. Complexity analysis

Feasibility test Algorithm 1 computes a support in O(s(H) + n · s(h)) time, that is O(n · s(h)) time, as s(H) ≤ n · s(h). This is
dominated by the prior construction of H discussed in Section 6.1.

Filtering We implement Algorithms 3 and 4 to run in O(r(h) · (p + c)) time, where r(h) = ∣∣g j(Dx j)
∣∣, p is the highest

complexity of the parametric functions in Table 6, and c is the highest complexity of the Filter procedures in Table 6. The
segments of H j are computed on the fly from h j and H , as explained in Section 6.2. The sum in line 3 of Algorithms 3
and 4 is actually provided by our representation of H , so it need not be recomputed each time. Algorithms 5 and 6 take
O(s(h) · p + s(H) + c) time.

The whole propagator The time complexity of our propagator, given in Algorithm 2, is obtained by multiplying the filtering
complexity by n (the number of variables) and adding the complexity of computing H . Table 7 summarises this for the
different versions of the propagator. Note that s(h) ≤ r(h) ≤ |Dx| and s(H) ≤ n · s(h). In the worst case, one can assume that
p = c = O(d), where d is the size of the largest domain, leading to the complexity announced in Section 1 for the general
case and constructing H by traversal: O(n · d2 + n2 · d). However, we show in Table 1 on page 171 and in Section 8 that the
time complexity for specific instantiations of the propagator is much lower.

The space complexity of our propagator is O(n + s(H)), as we need to store a constant amount of information for each
variable (namely the value si), as well as the whole function H (which amounts to a constant amount for each of its s(H)

segments). The functions hi and H j are not stored explicitly.

7. Instantiating the parametric propagator

We now present a number of relaxations and extensions of the problem as covered in the previous sections. At the same
time, we discuss the consistency levels that can be achieved by our propagator. Those results are used in Section 8 when
instantiating the parametric propagator for particular pairs of constraints.

J.-N. Monette et al. / Artificial Intelligence 241 (2016) 170–190 187
7.1. Relaxations

The required discrete convexity of the hi functions puts a strong restriction on the shape of the gi . Recall that gi(Dxi)

must be an interval by the first condition in Definition 1. As the discrete convexity must be respected for all Dxi that arise
during the search, the only instantiations of gi satisfying the first condition of Definition 1 are those whose image contains
only two values, which must be one unit apart. We call these characteristic functions. In such a case, the second condition
of Definition 1 is always respected and the f i can be any (integer) functions. This is for instance the case of the constraint
pairs Linear≤ and Among, and Linear≤ and Maximum shown in Table 2 on page 175.

If Dxi is restricted to be an interval, then the class of gi functions satisfying the first condition of Definition 1 is more
general, namely all functions where

|gi(u) − gi(u + 1)| ≤ 1 ∀u, u + 1 ∈ Dxi (13)

If there are holes in a domain Dxi , then Dxi can be relaxed to the smallest enclosing interval, but some propagation may
be lost: this compromise is often acceptable for global constraints. In this case, we do not achieve domain consistency, but
bounds(Z) consistency. Among others, the identity function respects equation (13). If some gi is the identity function, then
f i must be discretely convex, because hi = f i .

In general, if hi is not discretely convex, then one can replace it by a discretely convex function h′
i : S → T that under-

approximates hi , i.e., such that gi(Dxi) ⊆ S and h′
i(v) ≤ hi(v) for all v ∈ gi(Dxi). Using h′

i , the propagator remains correct but
might miss propagation.

Even when hi is discretely convex, it can be beneficial to replace it by an underapproximation in order to reduce the
time complexity of the algorithms, at the sacrifice of a potentially weaker filtering. For example, a generally applicable
relaxation is to replace all the segments of a function hi on the right of some sb

i by a single segment with slope �+(hi, sb
i),

and all segments on the left of sb
i by a single segment with slope −�−(hi, sb

i). This reduces the term s(h) in the complexity
analysis to the constant 2 but may lead to some missed filtering.

7.2. Extensions

If some hi is a linear function, then −hi is also discretely convex. Hence, one can put a lower bound f on
∑

i∈[1,n] f i(xi)

and run the propagator twice, first with constraint (1) being
∑

i∈[1,n] f i(xi) ≤ f , and then with constraint (1) being
−

∑
i∈[1,n] f i(xi) ≤ − f .

Our propagator can be extended to handle variables as the upper and lower bounds of the constraints. In such a case,
the largest values in the domains of f and g , as well as the smallest values in the domains of f and g are used in the
propagator. In addition, the other bound of each variable can be constrained using the H function without changing the
time complexity. Only bounds(Z) consistency can be achieved on those variables.

Our propagator can also be adapted to work with the f i being functions from integers to reals. As long as the gi are
defined from integers to integers, the domains of the intermediate variables yi and z stay subsets of the integers. However,
care must be taken when implementing operations on reals using floating point numbers.

8. Example instantiations

We now show that many existing (pairs of) constraints fit our parametric constraint, optionally relaxed or extended as
in Section 7. Table 2 on page 175 presents several instantiations of the f i and gi , together with the derived hi . We discuss
below some of these constraints and the time complexity of the parametric propagator in those cases, also summarised in
Table 1 on page 171. The instantiated complexities are derived from the parametric complexities in Table 7 by replacing
s(h), s(H), r(h), p, and c by suitable values derived from the hi .

If gi(u) = 0 for all i, then the second constraint vanishes and we can use our propagator for a single Sum≤ constraint.
In such a case, our parametric propagator achieves domain consistency in O(n · (p + c)) time. For the particular case of a
linear inequality (Linear≤), our parametric propagator runs in O(n) time. Although this complexity matches the theoretical
complexity of a dedicated propagator, our propagator is too general for this simple case and does not use any practical
improvement such as the ones presented in [10].

Similarly, if f i(u) = 0 for all i, then the first constraint vanishes and we can use our propagator for a single Sum=
constraint, with g = g, achieving bounds(R) consistency in O(n ·d) time. Again, for Linear=, we match the theoretical O(n)

complexity of dedicated propagators but without any practical improvement such as the ones presented in [10].
The case gi(u) = u for all i covers many interesting constraints already presented in the literature. In particular, it covers

the bounds(Z)-consistent propagators for the statistical constraints Deviation and Spread with a fixed rational average.
Interestingly, it can be generalised to any Lp -norm, with p > 0, except L+∞ . One can also give a different penalty for
deviations over and under the average. This may be very useful as in many practical situations it is less problematic to
deviate from the average in one direction than in the other. The time complexity of our propagator is O(n) for Deviation,
which matches the best published propagator [3]. For Spread and higher norms, the time complexity of our propagator is
O(n · d∪), with d∪ = ∣∣∪i∈[1,n] Dxi

∣∣. This is incomparable to the O(n · log n) complexity of the best published propagator [2].

188 J.-N. Monette et al. / Artificial Intelligence 241 (2016) 170–190
Table 8
Expressions for instantiating a propagator for Deviation. The conditions are not always mutually
exclusive and are to be evaluated in top-down order.

Parameter Instantiation

argminv∈gi (Dxi)
hi(v)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

�μ� if min Dxi ≤ μ ≤ max Dxi ∧�μ� − μ < μ − �μ�
�μ� if min Dxi ≤ μ ≤ max Dxi ∧�μ� − μ ≥ μ − �μ�
min Dxi if μ < min Dxi

max Dxi if μ > max Dxi

�+(hi , v)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

+∞ if v = max Dxi

−n if v < �μ�
n · (�μ� + �μ�) − 2 · n · μ if v = �μ� ∧ �μ� �= �μ�
n if v ≥ �μ�

bp+(hi , v)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

+∞ if v = max Dxi

min
(
max Dxi , �μ�) if v < �μ�

�μ� if v = �μ� ∧ �μ� �= �μ�
max Dxi if v ≥ �μ�

Filter(gi(xi) ≤ v) Filter(xi ≤ v)

Filter(gi(xi) = v ⇒ f i(xi) ≤ u) Filter(|n · v − n · μ| > u ⇒ xi �= v)

Note that our propagator achieves bounds(Z) consistency, which has only been achieved recently and independently in the
case of Spread [11].

As an example, we show in Table 8 the instantiations of the parameters for Deviation (symmetric parameters are omit-
ted): note that each hi has (up to) three segments, joining at the breakpoints �μ� and �μ�.

If gi is a characteristic function, then f i can be any function. A characteristic function may be used to count, as in the
case of the Count family of constraints (e.g., Among [14,15]). But characteristic functions can also be used to represent the
Maximum constraint with a fixed maximum m. Indeed, the constraint m = maxi∈[1,n] xi can be decomposed into ∀i ∈ [1, n] :
m ≥ xi ∧ ∑

1∈[1,n] [xi = m] ≥ 1. Table 2 gives a definition of the functions hi for Linear≤ and Exactly, in which case our
propagator achieves domain consistency and runs in O(n · (log n + p + c)) time, as does the dedicated propagator presented
in [9].

Many other pairs of Sum constraints can be instantiated. Note that the functions f i and gi can differ for each i, i.e., one
can mix in the same sum terms of different forms (e.g., some linear and some quadratic), as long as each corresponding
function hi is discretely convex.

Example 13. We now complete our running example. Applying Algorithm 2 achieves bounds(Z) consistency and yields the
following reduced domains: x1 ∈ [1, 4], x2 ∈ [2, 5], x3 ∈ [1, 3], and x4 ∈ [1, 3]. In total, 9 values were removed from the
domains. In contrast, if the two Sum constraints were filtered separately, then the domains would be x1 ∈ [0, 4], x2 ∈ [0, 5],
x3 ∈ [0, 3], and x4 ∈ [0, 3], for a total of only 5 removed values.

Generalising to any number n of workers, our parametric propagator takes O(n2) time. This is obtained by instantiating
the time complexity given in Table 7 for the special case with p = c =O(1) as all parametric functions and procedures can
be implemented in constant time, s(h) = 2 as each hi function has 2 segments, and s(H) = 2 · n as, in the worst case, the
parameters r and s are all different. �
9. Experimental evaluation

To show that the parametricity of our propagator is not detrimental not only to asymptotic complexity (as seen in Sec-
tion 8) but also to efficiency, we make an experiment to compare custom propagators with instantiations of our parametric
propagator. We selected the Deviation [3] and Spread [11] constraints as their bounds(Z)-consistent propagators are freely
available in the distribution of OscaR [16]. We implemented our propagator and its instantiations on top of OscaR. We
performed the comparison on the 100 instances of the balanced academic curriculum problem (BACP) that were intro-
duced in [17],6 modelled as in the OscaR distribution (we only slightly modified the search heuristic in order to make it
deterministic, so that the search trees are the same for comparison purposes).

For Deviation, we used the 44 instances that are solved to optimality in more than 1 second (to avoid measurement
errors) but less than 12 hours (3 instances timed out). When using our parametric propagator, the time to solve an instance
is on average only 7% longer than when using the custom propagator, with a standard deviation of 5%: see also Fig. 5, left.
The numbers of nodes in the search tree and calls to the propagator are exactly the same for both propagators due to their
common level of consistency and the deterministic search procedure.

For Spread, we used the 33 instances that are solved to optimality in more than 1 second but less than 12 hours
(2 instances timed out). When using our parametric propagator, the time to solve an instance is on average 28% shorter than

6 They are available at http :/ /becool .info .ucl .ac .be /resources /bacp.

http://becool.info.ucl.ac.be/resources/bacp

J.-N. Monette et al. / Artificial Intelligence 241 (2016) 170–190 189
Fig. 5. Results for Deviation (left) and Spread (right) comparing the time in seconds for solving an instance using either the specialised propagator or our
propagator. We only report instances that take more than 1 second but less than 12 hours.

when using the custom propagator, with a standard deviation of 10%: see also Fig. 5, right. This improvement is explained
by a different algorithmic approach, which is in our favour when the domains of the variables are small, as is the case
for the BACP instances. The numbers of nodes in the search tree and calls to the propagator are exactly the same for both
propagators.

Our Java implementation and the raw data for the results reported here are available at http://www.it.uu.se/research/
group/astra/software#convexpairs. A package for replication is at http :/ /recomputation .org [18].

10. Related work

Our approach of first computing a feasibility bound and then incrementally adapting it is not new and has been used in
the design of several propagators. Among others, this is the case for the cited propagators covered by our own propagator.
However, the novelty of our work is that for the first time we abstract from the details of each constraint to focus on their
common properties. This is close in spirit to what has been done with SeqBin [19,20] for another class of constraints.

When the gi are characteristic functions, our conjunction of Sum constraints can also be represented using CostGCC [21].
However, this would require the explicit representation of all variable–value pairs and induce a higher time complexity than
our propagator. On the other hand, CostGCC can handle more than one counting constraint in one propagator.

To the best of our knowledge, the notion of discrete convexity has not been used before for the design of propagators.
However, several researchers have exploited other forms of convexity in constraint programming, namely row convexity [22]
and tree convexity [23]. Those forms of convexity are unrelated to the one considered here and the focus of the cited works
is on global properties of the constraint network rather than a propagator.

Finally, it should be noted that there are domain-consistent propagators for several constraints for which our propaga-
tor achieves bounds(Z) consistency or bounds(R) consistency only. In particular, Trick [24] presented a domain-consistent
propagator for Linear= and Pesant [25] presented a domain-consistent propagator for Lp -Norm (including Spread and Devi-

ation). Those propagators are based on dynamic programming ideas and have a higher time complexity than our approach.

11. Conclusion and future work

We have studied how to propagate pairs of Sum constraints that respect a discrete convexity condition. From this con-
dition, we have derived a parametric propagator, which can be instantiated to be competitive with previously published
propagators, often matching their time complexity, despite its generality.

There are a number of open questions we plan to address in the future. Can we automatically generate the instantiation
of the parameters from the definitions of the f i and gi ? Can we make an incremental propagator that has a better time
complexity along a branch of the search tree? Can we extend the approach to functions that take more than one argu-
ment, say f i(xi, yi) for variables yi distinct from each other, or f i(xi, y) for a shared variable y, covering for instance the
variable-average version of Spread [2,26]? Can we deal with more than two sum constraints in one propagator?

http://www.it.uu.se/research/group/astra/software
http://www.it.uu.se/research/group/astra/software
http://recomputation.org

190 J.-N. Monette et al. / Artificial Intelligence 241 (2016) 170–190
References

[1] J.-N. Monette, N. Beldiceanu, P. Flener, J. Pearson, A parametric propagator for discretely convex pairs of Sum constraints, in: C. Schulte (Ed.), CP 2013,
in: LNCS, vol. 8124, Springer, 2013, pp. 529–544.

[2] G. Pesant, J.-C. Régin, SPREAD: a balancing constraint based on statistics, in: P. van Beek (Ed.), CP 2005, in: LNCS, vol. 3709, Springer, 2005, pp. 460–474.
[3] P. Schaus, Y. Deville, P. Dupont, Bound-consistent Deviation constraint, in: C. Bessière (Ed.), CP 2007, in: LNCS, vol. 4741, Springer, 2007, pp. 620–634.
[4] T. Petit, J.-C. Régin, N. Beldiceanu, A �(n) bound-consistency algorithm for the Increasing Sum constraint, in: J. Lee (Ed.), CP 2011, in: LNCS, vol. 6876,

Springer, 2011, pp. 721–728.
[5] J.-F. Puget, Improved bound computation in presence of several Clique constraints, in: M. Wallace (Ed.), CP 2004, in: LNCS, vol. 3258, Springer, 2004,

pp. 527–541.
[6] J.-C. Régin, T. Petit, The Objective Sum constraint, in: T. Achterberg, J.C. Beck (Eds.), CPAIOR 2011, in: LNCS, vol. 6697, Springer, 2011, pp. 190–195.
[7] C. Schulte, P.J. Stuckey, When do bounds and domain propagation lead to the same search space?, ACM Trans. Program. Lang. Syst. 27 (3) (2005)

388–425.
[8] C. Choi, W. Harvey, J. Lee, P. Stuckey, Finite domain bounds consistency revisited, in: A. Sattar, B.-h. Kang (Eds.), AI 2006: Advances in Artificial

Intelligence, in: LNCS, vol. 4304, Springer, 2006, pp. 49–58.
[9] N. Razakarison, N. Beldiceanu, M. Carlsson, H. Simonis, GAC for a linear inequality and an Atleast constraint with an application to learning simple

polynomials, in: SoCS 2013, AAAI Press, 2013, pp. 149–157.
[10] W. Harvey, J. Schimpf, Bounds consistency techniques for long Linear constraints, in: Proceedings of TRICS 2002, the Workshop on Techniques foR

Implementing Constraint programming Systems, 2002, pp. 39–46.
[11] P. Schaus, J.-C. Régin, Bound-consistent Spread constraint, application to load balancing in nurse-to-patient assignments, EURO J. Comput. Optim. (2013)

1–24.
[12] K. Murota, Recent developments in discrete convex analysis, in: W. Cook, L. Lovász, J. Vygen (Eds.), Research Trends in Combinatorial Optimization,

Springer, 2009, pp. 219–260.
[13] S. Fujishige, Submodular Functions and Optimization, 2nd edition, Annals of Discrete Mathematics, Elsevier, 2005.
[14] N. Beldiceanu, E. Contejean, Introducing global constraints in CHIP, Math. Comput. Model. 20 (12) (1994) 97–123.
[15] C. Bessière, E. Hebrard, B. Hnich, Z. Kızıltan, T. Walsh, Among, Common and Disjoint constraints, in: B. Hnich, M. Carlsson, F. Fages, F. Rossi (Eds.),

CSCLP 2005; Revised Selected and Invited Papers, in: LNAI, vol. 3978, Springer-Verlag, 2006, pp. 28–43.
[16] OscaR Team, OscaR: Scala in OR, available from http://www.oscarlib.org, 2012.
[17] P. Schaus, Solving balancing and bin-packing problems with constraint programming, PhD Thesis, Université catholique de Louvain, Belgium, 2009.
[18] I.P. Gent, The recomputation manifesto, CoRR arXiv:1304.3674, available at http://arxiv.org/abs/1304.3674.
[19] T. Petit, N. Beldiceanu, X. Lorca, A generalized arc-consistency algorithm for a class of counting constraints, in: IJCAI 2011, AAAI Press, 2011,

pp. 643–648, revised edition available at http://arxiv.org/abs/1110.4719.
[20] G. Katsirelos, N. Narodytska, T. Walsh, The SeqBin constraint revisited, in: M. Milano (Ed.), CP 2012, in: Lecture Notes in Computer Science, vol. 7514,

Springer, 2012, pp. 332–347.
[21] J.-C. Régin, Cost-based arc consistency for global cardinality constraints, Constraints 7 (3–4) (2002) 387–405.
[22] Y. Deville, O. Barette, P. Van Hentenryck, Constraint satisfaction over connected row-convex constraints, Artif. Intell. 109 (1–2) (1999) 243–271.
[23] Y. Zhang, E.C. Freuder, Properties of tree convex constraints, Artif. Intell. 172 (12–13) (2008) 1605–1612.
[24] M.A. Trick, A dynamic programming approach for consistency and propagation for knapsack constraints, Ann. Oper. Res. 118 (1–4) (2003) 73–84.
[25] G. Pesant, Achieving domain consistency and counting solutions for dispersion constraints, INFORMS J. Comput. 27 (4) (2015) 690–703.
[26] S.C. Loong, W.-Y. Ku, J.C. Beck, Q-bounds consistency for the spread constraint with variable mean, Constraints (2016) 1–7.

http://refhub.elsevier.com/S0004-3702(16)30097-2/bib6469736372657465s1
http://refhub.elsevier.com/S0004-3702(16)30097-2/bib6469736372657465s1
http://refhub.elsevier.com/S0004-3702(16)30097-2/bib737072656164s1
http://refhub.elsevier.com/S0004-3702(16)30097-2/bib646576696174696F6Es1
http://refhub.elsevier.com/S0004-3702(16)30097-2/bib696E6372656173696E6773756Ds1
http://refhub.elsevier.com/S0004-3702(16)30097-2/bib696E6372656173696E6773756Ds1
http://refhub.elsevier.com/S0004-3702(16)30097-2/bib507567657432303034s1
http://refhub.elsevier.com/S0004-3702(16)30097-2/bib507567657432303034s1
http://refhub.elsevier.com/S0004-3702(16)30097-2/bib6F626A65637469766553756Ds1
http://refhub.elsevier.com/S0004-3702(16)30097-2/bib626F756E6473s1
http://refhub.elsevier.com/S0004-3702(16)30097-2/bib626F756E6473s1
http://refhub.elsevier.com/S0004-3702(16)30097-2/bib626F756E647332s1
http://refhub.elsevier.com/S0004-3702(16)30097-2/bib626F756E647332s1
http://refhub.elsevier.com/S0004-3702(16)30097-2/bib6C696E65617241744C65617374s1
http://refhub.elsevier.com/S0004-3702(16)30097-2/bib6C696E65617241744C65617374s1
http://refhub.elsevier.com/S0004-3702(16)30097-2/bib6C696E656172s1
http://refhub.elsevier.com/S0004-3702(16)30097-2/bib6C696E656172s1
http://refhub.elsevier.com/S0004-3702(16)30097-2/bib73707265616432s1
http://refhub.elsevier.com/S0004-3702(16)30097-2/bib73707265616432s1
http://refhub.elsevier.com/S0004-3702(16)30097-2/bib6D75726F7461s1
http://refhub.elsevier.com/S0004-3702(16)30097-2/bib6D75726F7461s1
http://refhub.elsevier.com/S0004-3702(16)30097-2/bib66756A697368696765323030357375626D6F64756C6172s1
http://refhub.elsevier.com/S0004-3702(16)30097-2/bib42656C64696365616E75436F6E74656A65616E3934s1
http://refhub.elsevier.com/S0004-3702(16)30097-2/bib426573736965726548656272617264486E6963684B697A696C74616E57616C73683036455243494Ds1
http://refhub.elsevier.com/S0004-3702(16)30097-2/bib426573736965726548656272617264486E6963684B697A696C74616E57616C73683036455243494Ds1
http://www.oscarlib.org
http://refhub.elsevier.com/S0004-3702(16)30097-2/bib62616370s1
http://arxiv.org/abs/1304.3674
http://arxiv.org/abs/1110.4719
http://refhub.elsevier.com/S0004-3702(16)30097-2/bib4B6174736972656C6F733132s1
http://refhub.elsevier.com/S0004-3702(16)30097-2/bib4B6174736972656C6F733132s1
http://refhub.elsevier.com/S0004-3702(16)30097-2/bib636F7374676363s1
http://refhub.elsevier.com/S0004-3702(16)30097-2/bib726F77636F6E766578s1
http://refhub.elsevier.com/S0004-3702(16)30097-2/bib74726565636F6E766578s1
http://refhub.elsevier.com/S0004-3702(16)30097-2/bib747269636B32303033s1
http://refhub.elsevier.com/S0004-3702(16)30097-2/bib706573616E7432303135s1
http://refhub.elsevier.com/S0004-3702(16)30097-2/bib6C6F6F6E6732303136s1

	A parametric propagator for pairs of Sum constraints with a discrete convexity property
	1 Introduction
	2 Notation and background
	3 Overview of the approach
	4 Feasibility test
	4.1 Problem reformulation
	4.2 Deltas, segments, slopes, and breakpoints
	4.3 Characterisation of the H function
	4.4 Computing the feasibility bound and a support

	5 Domain ﬁltering
	5.1 Filtering in the general case
	5.2 Filtering in a special case

	6 A parametric propagator and its complexity
	6.1 Constructing H
	6.2 Computing H(b), hj(v), and Hj(b)
	6.3 Complexity analysis

	7 Instantiating the parametric propagator
	7.1 Relaxations
	7.2 Extensions

	8 Example instantiations
	9 Experimental evaluation
	10 Related work
	11 Conclusion and future work
	References

