
Dependency-Curated Large Neighbourhood Search
Frej Knutar Lewander1 #

Department of Information Technology, Uppsala University, Sweden

Pierre Flener #

Department of Information Technology, Uppsala University, Sweden

Justin Pearson #

Department of Information Technology, Uppsala University, Sweden

Abstract
In large neighbourhood search (LNS), an incumbent initial solution is incrementally improved by
selecting a subset of the variables, called the freeze set, and fixing them to their values in the
incumbent solution, while a value for each remaining variable is found and assigned via solving
(such as constraint programming-style propagation and search). Much research has been performed
on finding generic and problem-specific LNS selection heuristics that select freeze sets that lead to
high-quality solutions. In constraint-based local search (CBLS), the relations between the variables
via the constraints are fundamental and well-studied, as they capture dependencies of the variables.
In this paper, we apply these ideas from CBLS to the LNS context, presenting the novel dependency
curation scheme, which exploits them to find a low-cardinality set of variables that the freeze set of
any selection heuristic should be a subset of. The scheme often improves the overall performance of
generic selection heuristics. Even when the scheme is used with a naïve generic selection heuristic
that selects random freeze sets, the performance is competitive with more elaborate generic selection
heuristics.

2012 ACM Subject Classification Computing methodologies → Heuristic function construction

Keywords and phrases Combinatorial Optimisation, Large Neighbourhood Search (LNS), Constraint-
Based Local Search (CBLS)

Digital Object Identifier 10.4230/LIPIcs.CP.2025.20

Supplementary Material Software (Solver): https://github.com/astra-uu-se/gecode-lns
archived at swh:1:dir:6415a1abc5e2361c3994f6e8a17cfc4716edc89f

Software (Results, Experiments, and Scheme Generator): https://github.com/astra-uu-se/
gecode-lns-experiments, archived at swh:1:dir:099aba93950a85b9ccbb07a750c31877cb21f019

Funding Supported by grant 2018-04813 of the Swedish Research Council (VR).

Acknowledgements We thank Mikael Zayenz Lagerkvist and Dexter Leander for their help with the
Gecode implementation.

1 Introduction

Large neighbourhood search (LNS) [23, 19] is a method that combines systematic search with
local search to improve the scalability of the former on constrained optimisation problems
using heuristics of the latter. LNS starts from an incumbent solution that is iteratively
improved by fixing a subset of the variables to their values in the incumbent solution and
a value for each remaining variable is found and assigned via solving (such as constraint
programming-style propagation and search). This method has been very successful on a wide
variety of problems, such as vehicle routing [23, 2], bin packing [28], and scheduling [8, 24].

1 Corresponding author

© Frej Knutar Lewander, Pierre Flener, and Justin Pearson;
licensed under Creative Commons License CC-BY 4.0

31st International Conference on Principles and Practice of Constraint Programming (CP 2025).
Editor: Maria Garcia de la Banda; Article No. 20; pp. 20:1–20:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:frej.knutar.lewander@it.uu.se
https://orcid.org/0009-0009-6215-4666
mailto:pierre.flener@it.uu.se
https://orcid.org/0000-0001-8730-4098
mailto:justin.pearson@it.uu.se
https://orcid.org/0000-0002-0084-8891
https://doi.org/10.4230/LIPIcs.CP.2025.20
https://github.com/astra-uu-se/gecode-lns
https://archive.softwareheritage.org/swh:1:dir:6415a1abc5e2361c3994f6e8a17cfc4716edc89f;origin=https://github.com/astra-uu-se/gecode-lns;visit=swh:1:snp:8b00ae82810f7e8cfeab27e30fb2023155badeb1;anchor=swh:1:rev:227a5ea69495e763824d8ccdb2d240273ce4b975
https://github.com/astra-uu-se/gecode-lns-experiments
https://github.com/astra-uu-se/gecode-lns-experiments
https://archive.softwareheritage.org/swh:1:dir:099aba93950a85b9ccbb07a750c31877cb21f019;origin=https://github.com/astra-uu-se/gecode-lns-experiments;visit=swh:1:snp:1bc9c9539a74cb8c4af0049bb6c0599be9414d17;anchor=swh:1:rev:c58c0d45a47b2212c41bb87d4ffc014baa5db7fe
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics
https://www.dagstuhl.de

20:2 Dependency-Curated Large Neighbourhood Search

Traditionally, a modeller has to construct a problem-specific selection heuristic for the
determination of the subset of variables to fix [8, 22]. However, there are now many variants
of LNS that automatically determine that subset with good search performance, such as
(but not limited to) (reverse) propagation guided LNS [18], cost impact guided LNS [12],
explanation-based LNS [20], self-adaptive LNS [26], and variable-relationship guided LNS [24].

In most combinatorial optimisation solvers, such as for mixed integer linear programming,
constraint programming (CP), Boolean satisfiability (SAT), and constraint-based local search
(CBLS), when some variable x becomes fixed, the values of some other variables can be found
and assigned via search-free unique solving (via inference such as CP propagation, SAT unit
propagation, and CBLS invariant propagation). Therefore, the relations between x and the
assigned variables are functional dependencies. In CBLS, these functional dependencies are
fundamental and heavily studied [15, 16, 27, 10]. We have not found generic LNS selection
heuristics or CP branching heuristics that automatically exploit these functional dependencies
that are exploited in CBLS. However, they are often exploited manually by the modeller
when for example creating a problem-specific CP branching heuristic that guides search.

Our contributions are:
applying from CBLS to a CP context (and hence to CP-based LNS) the idea of a directed
possibly cyclic graph that is induced by the functional dependencies between variables
via the constraints of the model;
designing a scheme that exploits the induced directed graph to remove variables from the
LNS space that are functionally defined by others;
describing how our scheme can be automated;
showing that state-of-the-art generic LNS selection heuristics are easily extended to make
use of our scheme;
showing that our scheme often improves the overall performance when used with state-of-
the-art generic selection heuristics; and
showing that our scheme, when used with a naïve generic LNS selection heuristic that
fixes a set of variables selected at random inside each LNS iteration, is competitive with
more elaborate state-of-the-art generic LNS selection heuristics, even when they also use
our scheme.

We first give related work from CBLS in Section 2, before we present how to apply it to a CP
context (and hence to CP-based LNS) in Section 3. We then give an example of functional
dependencies for a CP model in Section 4. We describe generic LNS selection heuristics from
the literature in Section 5. We present our scheme in Section 6. We give our experiment
setup in Section 7 and discuss the results in Section 8. Finally, we conclude in Section 9.

2 Constraint-Based Local Search

In constraint-based local search [15, 16, 27, 10] (CBLS), each constraint of the problem is
either made to always implicitly hold via the initialisation and neighbourhood, or replaced
by one or more invariants, where an invariant (also called a one-way constraint) defines a
subset of the constrained variables, called its output variables, of the replaced constraint by
the remaining variables, called its input variables. Invariants that replace a constraint of the
problem are called violation invariants, where a violation invariant introduces and defines a
violation variable, absent in the problem, which takes the value 0 if the replaced constraint
holds, else a positive value, usually proportional to the amount of violation. The replaced
constraint is therefore softened, but only an assignment of the variables where all violation
variables take the value 0 is a solution, as it satisfies all the constraints of the problem.

F. Knutar Lewander, P. Flener, and J. Pearson 20:3

x1

··
·

xn

n∑
i=1

xi s |s − t| v

Figure 1 An invariant graph for the subset-sum constraint satisfaction problem of size n with n+2
integer variables and two invariants. Note that t is not a variable.

The invariants and variables induce a directed graph, called the invariant graph, with
the invariants and variables as vertices and the definitions of variables via invariants as arcs,
where each variable has an outgoing arc to each invariant that it is an input variable to
and an incoming arc from the invariant that defines it (if any). Note that in any CBLS
model, any variable is defined by at most one invariant. All the possibly multiple (if not
zero) source vertices and possibly multiple (if not zero) sink vertices are variables, where the
source variables transitively define the remaining variables via the invariants.

As an example of an invariant graph, consider the subset-sum constraint satisfaction
problem, where given a set of n integers vi and an integer t, a subset of the set is to be
found that sums to exactly t. A corresponding invariant graph contains n integer variables,
where each variable xi takes the value vi if vi is in the subset and 0 otherwise; one invariant
with as inputs the variables xi and as output the integer variable s, which takes as value
the sum of the integers in the subset; and one violation invariant with as input s and as
output the violation variable v, which is to be minimised and takes as value the absolute
difference between s and t. This amounts to softening the constraint

∑n
i=1 xi = t. The

source variables are the variables xi, and they transitively define the other variables via the
two invariants. Any assignment of the variables xi where s takes the value t is a solution,
as v = 0 then, which is minimal. The invariant graph is shown in Figure 1, where circled
vertices are variables and boxed vertices are invariants.

During a CBLS-style search, only the values of the source variables are changed, while
the values of the remaining variables are found via CBLS-style invariant propagation.

In CBLS, the variables and constraints induce the invariant graph of definitions of
variables, whether this is done by the CBLS modeller or by automated analysis of, say, a
MiniZinc [17] model [4]. In the sequel, we apply the idea of the induced invariant graph to
CP models to find functional definitions of variables, which can be exploited during LNS.

3 The Dependency Graph of a CP Model

In a CP model, some constraints are dependency constraints, where a dependency constraint c

on the variables X = I ∪O determines the values of the variables in O when the variables in I
become fixed. We can view c as a function that determines the values of output variables O
when the input variables I become fixed. We say that c is a dependency constraint and that I
functionally defines O via c, denoted by I c=⇒ O, or simply that I functionally defines O.

For example, consider the integer variables y and i, the array P of integers, and the
constraint Element(P, i, y), which constrains y to be equal to the integer in P at index i.
When i becomes fixed to some value v, the value of y becomes assigned to the integer in P
at index v. The constraint is a dependency constraint, via which i functionally defines y.

As another example, consider the Boolean variable b, the array of Boolean variables B, and
the constraint Exists(B, b), which constrains b to take the value True if any of the variables
in B takes the value True, else b takes the value False. The constraint is a dependency
constraint, via which B functionally defines b.

CP 2025

20:4 Dependency-Curated Large Neighbourhood Search

Some constraints are not dependency constraints. For example, consider the integer
variables x and y, and the constraint LessEqual(x, y), which enforces that x is smaller
than or equal to y. This constraint is not a dependency constraint as neither x nor y can be
defined via it by the other variable.

For a CP model, the dependency constraints and the variables induce a directed graph,
called the dependency graph [13], where for each set I of variables that functionally defines
a set O of variables via some dependency constraint c, there is a vertex d, an arc x → d

for each vertex x ∈ I, and an arc d → y for each vertex y ∈ O. Note that the dependency
graph is possibly cyclic: we will see an example of an acyclic dependency graph in Figure 2
in Section 4, and an example of a cyclic dependency graph in Figure 3 in Section 7.2.3. Also
note that all the variables and all the dependency constraints are in the dependency graph,
while the other (non-dependency) constraints are not.

A dependency graph differs from an invariant graph as follows:
in a dependency graph, a variable can have any number of incoming arcs, while it can
have at most one in an invariant graph;
a dependency graph does not contain non-dependency constraints, while in an invariant
graph, all constraints that are not made to implicitly hold are encoded (as invariants);
and
an invariant graph is required when performing CBLS-style invariant propagation, while
a dependency graph is not required when performing CP-style solving (neither in search
nor in CP-style propagation).

For any acyclic dependency graph, the source variables transitively functionally define all
remaining variables. Therefore, for any acyclic dependency graph, the minimum-cardinality
set of such variables is the set of source variables. However, this does not always hold for
a cyclic dependency graph (as we will see for the dependency graph shown in Figure 3 in
Section 7.2.3). In Section 6, we present a greedy scheme that, given a CP model (inducing a
cyclic or acyclic dependency graph), finds a low-cardinality set of such variables, which can
be exploited to guide LNS.

4 Example: Relaxed Car Sequencing (RCS)

We now give an example to show how the dependency graph is constructed from a CP model.
The car sequencing (constraint satisfaction) problem [5] has a set of car classes, each class
with a set of mandatory features (called options in [5]), each feature with a capacity on how
many cars of that feature can be produced in a subsequence of given size, and an order stating
how many cars of each class to produce. The problem is to find a production sequence for all
ordered cars, such that the capacity restrictions on features are satisfied and all ordered cars
are produced. Since LNS can only be performed on constrained optimisation problems, we
transform the problem into one by relaxing it into the relaxed car sequencing (RCS) problem
by (i) including an additional dummy class of car that has no features; (ii) relaxing the
constraint that all ordered cars are to be produced by replacing it by a constraint that each
car is to be produced at most once; and (iii) introducing an objective variable that is to be
minimised and is the number of dummy cars that are produced. Note that for any solution
to the relaxed problem, if the objective variable takes the value 0, then the solution satisfies
the constraints of the original problem, as all cars are produced.

A model for RCS in the solver-independent MiniZinc language [17] is in Listing 1. Lines 1–
7 declare the set of cars to be produced, the set of features, the set of car classes, the
array of the sizes of the feature subsequences, the array of the maximum capacities for

F. Knutar Lewander, P. Flener, and J. Pearson 20:5

Listing 1 A MiniZinc model for the relaxed car sequencing (RCS) problem.

1 set of int: Cars;
2 set of int: Features;
3 set of int: Classes;
4 array[Features] of int: sequenceSize;
5 array[Features] of int: sequenceCapacity;
6 array[Classes] of int: numOrdered;
7 array[Classes, Features] of bool: classHasFeature;
8 int: dummyClass = max(Classes) + 1;
9 set of int: ClassesAndDummy = Classes union {dummyClass};

10 array[ClassesAndDummy, Features] of bool: classHasFeatureExt =
11 array2d(ClassesAndDummy, Features,
12 array1d(classHasFeature) ++ [false | _ in Features]);
13 array[Cars] of var ClassesAndDummy: class;
14 array[Cars, Features] of var bool: carHasFeature = array2d(
15 Cars, Features, [classHasFeatureExt[class[car], f]
16 | car in Cars, f in Features]);
17 array[ClassesAndDummy] of var int: numProduced =
18 global_cardinality_closed(class, ClassesAndDummy);
19 constraint forall(c in Classes)(numProduced[c]<=numOrdered[c]);
20 constraint forall(f in Features)(
21 sliding_sum(0, sequenceCapacity[f],
22 sequenceSize[f], carHasFeature[.., f]));
23 solve minimize numProduced[dummyClass];

the feature subsequences, the array of the numbers of ordered cars for each class, and the
two-dimensional matrix of the features that the car classes use respectively. The sets of
cars to be produced, features, and car classes are required to be intervals. Lines 8–12
declare the dummy car class, the set of car classes including the dummy car class, and the
two-dimensional matrix of the features that the car classes and dummy class use, respectively.
On line 13, the array class of variables is declared, where class[c] denotes the class of
car c. On lines 14–16, the two-dimensional matrix carHasFeature of variables is declared
and is functionally defined by class, where carHasFeature[c,f] denotes if feature f is
to be installed on car c. On lines 17–18, the array numProduced of variables is declared
and is functionally defined by class, where numProduced[c] denotes the number of cars
of class c that are actually produced. Line 19 enforces that no car class is overproduced.
Lines 20–22 enforce that the feature capacity is not violated for any subsequence. Finally,
Line 23 declares that the number of dummy cars is to be minimised.

This model was retrieved from the MiniZinc Benchmark repository and relaxed from
a constraint satisfaction model into a constrained optimisation model as well as rewritten
by renaming parameters and variables and replacing each constraint predicate with the
corresponding constraint function where possible.2

The acyclic dependency graph for RCS with three cars to produce, two features, and two
car classes induced by the MiniZinc model in Listing 1 is shown in Figure 2, where circled
vertices are variables and boxed vertices are dependency constraints.

2 The MiniZinc Benchmark repository: https://github.com/MiniZinc/minizinc-benchmarks

CP 2025

https://github.com/MiniZinc/minizinc-benchmarks

20:6 Dependency-Curated Large Neighbourhood Search

c1 d1

f1,1

f1,2

c2 d2

f2,1

f2,2

c3 d3

f3,1

f3,2

d4 p1

p2

p3

Figure 2 The acyclic dependency graph induced by the RCS MiniZinc model of Listing 1
with 3 cars, 2 features, and 2 non-dummy car classes. Integer variable ci denotes class[i],
Boolean variable fi,j denotes carHasFeature[i,j], and integer variable pℓ denotes numProduced[ℓ].
Vertices d1, d2, and d3 correspond to the dependency constraints on lines 14–16 and vertex d4

corresponds to lines 17–18. The constraints in lines 19–22 are non-dependency constraints and are
therefore absent in the dependency graph.

5 Large Neighbourhood Search

LNS [23, 19] is an iterative method for optimisation problems, starting from an incumbent
feasible solution that is improved during search. In every iteration, first a subset of the
variables, called the freeze set, is selected and the values of these variables are kept from
the incumbent solution, then search (for example CP-style branch and bound search) is
performed until some stopping criterion is met, and finally, if a better solution was found,
then the incumbent solution is replaced by it and a constraint that all future solutions must
be better than the new incumbent solution is added. The selection of a freeze set is done via a
selection heuristic, which can be either problem-specific or generic. Typically, problem-specific
selection heuristics (such as [8, 22]) cannot easily be reused between problems.

In Section 5.1 we give a naïve generic selection heuristic that selects the freeze set at
random, and in Sections 5.2 to 5.4 we give more elaborate generic selection heuristics from
the literature.

5.1 Randomised LNS
Randomised LNS is a naïve generic selection heuristic that inside each LNS iteration creates a
freeze set by, for each variable x, selecting uniformly from the continuous closed interval [0, 1]
a value p: if p is below some threshold ϕ (in our implementation ϕ ∈ [0.05, 0.95]), then x is
included in the freeze set. The threshold ϕ is typically updated during search (with initial
value 0.6 in our implementation), where it is decreased to escape local minima of the LNS
space, while it is increased to focus on exploring a smaller part of the LNS space.

5.2 Propagation Guided LNS and Reverse Propagation Guided LNS
Propagation guided LNS [18] (PG-LNS) has a selection heuristic that gradually expands
the freeze set inside each LNS iteration, starting from the empty set, by freezing variables
with the largest reduction in domain size. The freeze set is expanded until the size of the
CP search space becomes smaller than some predefined size (computed from the sum of the
logarithms of the sizes of the current domains of the variables).

Reverse propagation guided LNS [18] (RPG-LNS) differs from PGLNS by having a
selection heuristic that gradually excludes variables from the freeze set inside each LNS
iteration, starting from the set of all variables, by excluding variables with the smallest
reduction in domain size. The freeze set is shrunk until the size of the CP search space
becomes greater than some predefined size (which is dynamically updated during search).

F. Knutar Lewander, P. Flener, and J. Pearson 20:7

5.3 Cost Impact Guided LNS
Cost impact guided LNS [12] (CIG-LNS) has an impact collecting procedure and a selection
heuristic, where the latter makes use of information gathered by the former.

During impact collection, several dives are performed, where in each dive, first a random
permutation of the variables is constructed, then each variable in the permutation is fixed to
its value in the incumbent solution, and then the change in the lower (upper) bound of the
objective variable (often called cost variable) for a minimisation (maximisation) problem is
retrieved. For each variable and over the dives, the sum of the retrieved changes in the bound
of the objective variable is stored and used by the selection heuristic. For each variable, this
sum is called the impact of that variable.

The selection heuristic gradually shrinks the freeze set inside every LNS iteration, starting
from the set of all variables, by excluding the variables with the greatest impacts as gathered
by the impact collecting procedure.

Typically, the impact collecting procedure is performed every 10 LNS iterations and 10
dives are performed during it.

5.4 Variable-Relationship Guided LNS
Given a variable x that is not fixed, the local cost of x is the change in the lower (upper)
bound of the objective variable for a minimisation (maximisation) problem when x is fixed
to its value in the incumbent solution.

Variable-relationship guided LNS [24] (VRG-LNS) has a selection heuristic such that
inside each LNS iteration the freeze set is gradually shrunk, starting from the set of all
variables, by either (i) first selecting a random subset of the variables and then removing one
amongst them that has the greatest local cost, or (ii) removing a variable that is constrained
by one or more of the same constraints as the previously excluded variable. The selection
heuristic shrinks the freeze set by alternating between (i) and (ii), starting with (i). The
number of excluded variables is low in initial iterations but changes during search, where it
is increased in some iterations to escape local minima of the LNS space, before it is restored
to its original size.

The VRG-LNS selection heuristic (ii) selects a variable x that shares constraints with the
previously selected variable y, but does not exploit what we call the dependency graph as
the shared constraints do not have to be dependency constraints and there is no requirement
that x or y functionally define each other.

6 Dependency Curation for LNS

In the selection heuristics of PG-LNS, RPG-LNS, and VRG-LNS, the freeze set is gradually
updated inside each LNS iteration to include variables such that many other variables are
assigned values via CP-style propagation [18, 24]. For these selection heuristics, such variables
are found either experimentally or heuristically during search. We now show such variables
can also be found by exploiting the dependency graph before search starts and how they can
be used by any LNS selection heuristic.

We call any set of variables that transitively functionally define all remaining variables a
set of search variables, as only their values must be found via search.

Consider a CP model with the set V of variables. Finding a set S ⊆ V of search variables
is trivial as V itself is a set of search variables, though of maximum cardinality. Our idea is
that the smaller the set S is, the more CP-style propagation will occur, as the value of each

CP 2025

20:8 Dependency-Curated Large Neighbourhood Search

variable in V \ S is found and assigned via only propagation (as S transitively functionally
defines V \ S). Additionally, for any (generic or problem-specific) selection heuristic, if the
freeze set is forced to become a subset of S, then the LNS space is reduced, no data has to
be stored, and no operations have to be performed on any variable in V \ S by the selection
heuristic, potentially improving its memory footprint and running time.

Note that if the dependency graph is acyclic, then the minimum-cardinality set of search
variables is the set of source variables. Otherwise, the dependency graph contains at least one
strongly connected component (SCC) with two or more vertices, and finding a low-cardinality
set of search variables is a subtle issue, as discussed next.

As the variables and dependency constraints are known up-front, a low-cardinality set
of search variables can be constructed before search starts. A (generic or problem-specific)
selection heuristic can use the constructed set of search variables throughout search by forcing
the freeze set to be a subset of that set.

Our scheme, called the dependency curation scheme (DCS), finds a low-cardinality set of
search variables given the variables, vertices, and arcs of a dependency graph. It is shown in
greedy Algorithm 1, where:

function stronglyConnectedComponents(N , A) returns an ordered list of SCCs for ver-
tices N and arcs A, such that each SCC is before all other SCCs that are reachable from
it, like [25] but where the returned list is reversed (as the graph is explored in depth-first
order);
function in(A, v) returns all incoming arcs to vertex v in the set A of arcs;
function out(A, v) returns all outgoing arcs from vertex v in the set A of arcs;
function stack() returns an empty stack;
function empty(Z) returns True if the stack Z contains no elements, else False;
function pop(Z) removes the top-most element from the stack Z and returns it; and
procedure push(Z, v) pushes element v onto stack Z.

First, the sets W of visited vertices and S of search variables are initialised, lines 2–3. Each
SCC of the dependency graph is iterated over, where SCC X is iterated over before all other
SCCs that are reachable from X are iterated over, line 4. While there are unvisited variables
in X , line 5, a variable x with the lexicographically lowest priority is retrieved from the
unvisited variables in X , where the priority of a variable y is (i) the in-degree of y and (ii)
the opposite of the out-degree of y, line 6. Variable x is added to the set S of search variables,
line 7, and to the set W of visited vertices, line 8. The empty stack Z is created, line 9,
before x is added as the top-most element to Z, line 10. While Z is not empty, line 11, its
top-most element u is removed, line 12. The outgoing arcs Au from u are retrieved, line 13,
and removed from A, line 14. For each arc (u, v) ∈ Au, where v has not been visited and
either (i) is a variable or (ii) has no incoming arcs in A, line 15, vertex v is added to the
set W of visited vertices, line 16; its incoming arcs are removed from A, line 17; and v is
added as the top-most element to Z, line 18. Finally, the found set S of search variables is
returned, line 19.

Note that Algorithm 1 is greedy as the selection of a search variable x, line 6, potentially
makes the set S not a minimal-cardinality set of search variables.

For example, consider the car sequencing problem given in Section 4 with three cars, two
features, and two car classes; its MiniZinc model in Listing 1; and its dependency graph
in Figure 2. The dependency graph contains 16 SCCs: one for each vertex. Algorithm 1
first creates the initially empty sets of search variables and visited vertices, lines 2–3. The
sets {c1}, {c2}, and {c3} of vertices are the first three SCCs that are iterated over, as c1, c2,
and c3 are the only vertices without incoming arcs, line 4. The remaining lines then explore

F. Knutar Lewander, P. Flener, and J. Pearson 20:9

Algorithm 1 The dependency curation scheme for finding a low-cardinality set of search
variables.

Data: V is the set of variables, N ⊇ V is the set of nodes in the dependency graph,
and A is the set of arcs in the dependency graph.

Result: A set S ⊆ V of search variables, which transitively functionally define the
remaining variables V \ S via the constraints.

1 function dependency-curation(V, N , A):
2 W := ∅ // The set of visited vertices
3 S := ∅ // The set of search variables
4 forall X ∈ stronglyConnectedComponents(N , A) do
5 while (X ∩ V) \ W ̸= ∅ do
6 x := arg lex min

y∈(X ∩V)\W
(⟨|in(A, y)| , − |out(A, y)|⟩)

7 S := S ∪ {x}
8 W := W ∪ {x}
9 Z := stack() // The stack used for depth-first search

10 push(Z, x)
11 while ¬empty(Z) do
12 u := pop(Z)
13 Au := out(A, u)
14 A := A \ Au

15 forall u → v ∈ Au where v /∈ W and (v ∈ V or in(A, v) = ∅) do
16 W := W ∪ {v}
17 A := A \ in(A, v)
18 push(Z, v)

19 return S

the dependency graph in a fashion similar to depth-first search, starting from these source
variables, where traversed outgoing arcs are removed and outgoing arcs from any non-variable
vertex are only traversed if all its incoming arcs have been traversed and removed. The
dependency graph is acyclic, and therefore the variables c1, c2, and c3 transitively functionally
define the remaining variables and actually form (in this case) a minimum-cardinality set of
search variables.

If each strongly connected component only has a single vertex, then the dependency
graph is acyclic and the algorithm can be bypassed, as the minimum-cardinality set of search
variables is the set of source variables.

For a CP model, DCS finds a low-cardinality set of search variables that can be used with
any (generic or problem-specific) selection heuristic by forcing its freeze set to be a subset of
that set of search variables. Note that DCS itself is not a selection heuristic and must be
used together with one, such as any of the generic selection heuristics in Sections 5.1 to 5.4.

VRG-LNS (Section 5.4) [24] is similar to DCS as both find the information of relations
on variables via constraints before LNS iterations. However, they differ from each other, as
VRG-LNS uses both dependency and non-dependency constraints that each pair of variables
share, while DCS uses the functional definitions of variables via only dependency constraints.

CP 2025

20:10 Dependency-Curated Large Neighbourhood Search

7 Experiments

In Section 7.1, we give the details of our extensions to the solver that was used for the
experiments. In Section 7.2, we describe how we selected the problems and for each problem,
its specification and how its initial incumbent solutions are generated.

7.1 Setup
We extended the Gecode-based information-sharing portfolio solver in [11] – containing
amongst other assets the CP solver Gecode [6]; Gecode-based LNS for randomised LNS,
PG-LNS, and RPG-LNS; and Gecode-based LNS inspired by CIG-LNS and VRG-LNS – by:

reimplementing CIG-LNS and VRG-LNS by following [12] and [24] more closely;
allowing for supplying a set of search variables;
enforcing the freeze set to be a subset of the set of search variables, if one was supplied;
allowing for running a single generic LNS selection heuristic without any parallelism
instead of simultaneously running multiple communicating assets in parallel (effectively
making it a non-portfolio solver); and
allowing for supplying an initial solution to be used as the first incumbent solution.

Note that we could have chosen any open-source CP solver, such as MiniCP [14], but we chose
to extend the solver in [11], as it is very competitive; already has support for randomised LNS,
PG-LNS, and RPG-LNS; as well as already has support for a variation each of CIG-LNS
and VRG-LNS.

We decided not to implement the generic selection heuristics of explanation-based LNS [20]
and self-adaptive LNS [26], as there is no Gecode-based LNS or one inspired thereof for
either of them in the portfolio solver [11].

Additionally, since variable objective LNS [21] does not have a generic selection heuristic
and therefore must be paired with (a generic or problem-specific) one, we decided not to use
the generic selection heuristic that makes use of it [11].

There are problem-specific LNS selection heuristics, for example [8] for the job shop
problem and [22] for steel mill slab design. However, we here only compare the performance
of generic LNS selection heuristics, both with and without the use of DCS, as DCS can
be used with any (generic or problem-specific) LNS selection heuristic. Additionally, we
believe that the use of DCS for most problem-specific LNS selection heuristics gives little
to no improvement in performance, as for any such LNS selection heuristic, the functional
definitions via constraints are typically exploited by it by design.

For each run on a problem instance, we supply the same initial incumbent solution in
order to make a fair comparison between selection heuristics on the same instance, as we can
then compare the quality of their found solutions.

7.2 Problem Selection
We selected four problems: relaxed car sequencing (Section 4) [5] (RCS), steel mill slab
design [9, 22] (SMSD), job shop (JSP), and the travelling salesperson problem with time
windows [7] (TSPTW). RCS and SMSD were selected since their models contain many
dependency constraints, and therefore our conjecture was that DCS improves performance.
Conversely, JSP was selected since its model contains few dependency constraints, and
therefore our conjecture was that DCS does not improve performance. Lastly, TSPTW
was selected since the induced dependency graph is cyclic (as will be seen in Section 7.2.3),
because of cyclic dependency constraints. SMSD was used both in [12] and [24], while a
version of RCS was also used in the latter.

F. Knutar Lewander, P. Flener, and J. Pearson 20:11

We used models in the solver-independent MiniZinc language [17] and instances for
RCS and SMSD from the MiniZinc Benchmark repository, where we rewrote each model
and instance for ease of readability, by renaming parameters and variables, moving some
parameters from the models to the instances, and replacing each constraint predicate
with the corresponding constraint function where possible. As the JSP model in the
MiniZinc benchmark repository does not make use of suitable global constraints (such as
disjunctive), we handcrafted a new MiniZinc model for JSP but used MiniZinc instances
from the MiniZinc benchmark repository. We handcrafted a MiniZinc model for TSPTW,
starting from [3]. We translated published instances for TSPTW into MiniZinc-readable
instances.3

We created for each problem a DCS generator that, for each problem instance, finds a
low-cardinality set of search variables.

We gave the specification for RCS in Section 4. The dependency graph for each RCS
instance is acyclic, and the minimum-cardinality set of search variables is the set of classes
of the cars, as shown in Section 6. The initial incumbent solution for each RCS instance is
where the class of each car is the dummy class, as that fulfils the capacity restrictions on the
features.

We give the specifications, the found sets of search variables, and how the initial incumbent
solutions are created for the remaining problems in Sections 7.2.1 to 7.2.3.

7.2.1 Steel Mill Slab Design (SMSD)
The steel mill slab design problem is a constrained optimisation problem that has a set of
orders, each with a size and colour; a set of slabs, each taking one of a set of capacities; and a
colour capacity c. Orders are to be assigned to slabs, such that for each slab, the number of
differently coloured orders does not exceed c and the sizes of the fitted orders do not exceed
the capacity of the slab. The objective is to minimise the unused capacity (called slack) of
the slabs (unused slabs have zero slack).

The SMSD MiniZinc model also contains symmetry-breaking constraints that (i) for any
pair of slabs sj and sk, with j < k, required the total size of the fitted orders of sj to be
at most the total size of the fitted orders of sk and (ii) for any pair of orders oℓ and om,
with ℓ < m and where oℓ and om both have the same colour and size, require order oℓ to be
placed in the same slab as om or a previous slab than om.

The dependency graph for each instance is acyclic, and the minimum-cardinality set of
search variables is the set of slabs that the orders are placed in.

The initial supplied incumbent solution for each instance is automatically generated by
assigning each order to a distinct slab.

7.2.2 Job Shop (JSP)
The job shop problem is a constrained optimisation problem that has a set M of machines
and a set of jobs, where each job consists of a sequence of |M| tasks, each having a discrete
duration, and the tasks of a job each require a distinct machine. For any job j, before the
task at index i may be started, all previous tasks 1 . . (i − 1) of j must have been completed.
No two tasks requiring the same machine can be performed simultaneously. Once a machine
has started working on a task, it must run it until completion. The objective is to minimise
the latest completion time of all tasks.

3 TSPTW instances: https://myweb.uiowa.edu/bthoa/tsptwbenchmarkdatasets.htm

CP 2025

https://myweb.uiowa.edu/bthoa/tsptwbenchmarkdatasets.htm

20:12 Dependency-Curated Large Neighbourhood Search

The dependency graph for each instance is acyclic, and the minimum-cardinality set of
search variables is the set of starting times of the tasks.

The initial supplied incumbent solution is to perform the tasks of each job sequentially,
without any two tasks of any two jobs being performed simultaneously.

7.2.3 Travelling Salesperson with Time Windows (TSPTW)

Consider n locations that are to be visited, where one location is called the depot, with a
travelling duration between each directed pair of locations, and for each location u an earliest
visiting time eu and a latest visiting time ℓu. A TSPTW tour is a Hamiltonian cycle of the
weighted directed graph induced by the n locations as nodes, starting at the depot, visiting
each location u exactly once and between times eu and ℓu, with a zero visit duration. If the
salesperson arrives at location u before eu, then they have to wait until eu before departing.
The total duration of the tour is to be minimised.

Note that for other TSPTW problems, the objective function to be minimised is typically
the total travel time, such as in [3]. However, and only for realism, we here instead minimise
the total duration of the tour, including the wait times.

A MiniZinc model for TSPTW is in Listing 2. Lines 1–6 declare the number of locations,
the depot location, the set of locations to be visited, the array of the earliest visiting times of
the locations, the array of the latest visiting times of the locations, and the two-dimensional
matrix with the travelling durations between the locations, respectively. On line 7, the
array pred of variables is declared, where pred[l] denotes the location that is visited just
before location l. On lines 8–9, the array durFromPred of variables is declared and is
functionally defined by pred, where durFromPred[l] denotes the travelling duration from
location pred[l] to location l. On line 10, the array arrival of variables is declared,
where arrival[l] denotes the arrival time at location l. The arrival time back at the
depot is the total duration of the tour. On lines 11–12, the array departure of paramet-
ers and variables is declared and is functionally defined by the arrival times at non-depot
locations in arrival, where departure[l] denotes the departure time from location l; it
differs from arrival[l] if l is the depot or the salesperson arrives at l before early[l]
and has to wait there until early[l] before departing. Note that departure[depot]
is the earliest visiting time of the depot, which is a parameter. On lines 13–14, the ar-
ray departurePred of variables is declared and is functionally defined by pred and departure,
where departurePred[l] is the departure time from location pred[l]. On lines 15–16, the
arrival time at each location is functionally defined by durFromPred and departurePred.
Line 17 enforces that the pred variables form a Hamiltonian cycle. Line 18 enforces that each
location is visited before its latest visiting time. Finally, line 19 declares that arrival[depot]
is to be minimised, which is the total duration of the tour.

For each location l variable pred[l] defines variable durFromPred[l]. The variables in
the array departure are transitively functionally defined by themselves and the variables
in the array pred, and the same is true for the variables in the arrays departurePred
and arrival. Therefore, there is a cycle in the induced dependency graph containing
the variables in the arrays departure, departurePred, and arrival. Using DCS, the
greedily found low-cardinality set of search variables has the variables in the arrays pred
and departure. The cyclic dependency graph for TSPTW with three locations corresponding
to the MiniZinc model in Listing 2 is shown in Figure 3.

F. Knutar Lewander, P. Flener, and J. Pearson 20:13

Listing 2 A MiniZinc model for the travelling salesperson with time windows (TSPTW) problem.

1 int: n;
2 int: depot = 1;
3 set of int: Locs = 1..n;
4 array[Locs] of int: early;
5 array[Locs] of int: late;
6 array[Locs, Locs] of int: duration;
7 array[Locs] of var Locs: pred;
8 array[Locs] of var 0..max(duration): durFromPred = [
9 duration[l, pred[l]] | l in Locs];

10 array[Locs] of var 0..max(late): arrival;
11 array[Locs] of var min(early)..max(late): departure =
12 [early[depot]] ++ [max(early[l], arrival[l]) | l in 2..n];
13 array[Locs] of var 0..sum(duration): departurePred = [
14 departure[pred[l]] | l in Locs];
15 constraint forall (l in Locs) (
16 arrival[l] = departurePred[l] + durFromPred[l]);
17 constraint circuit(pred);
18 constraint forall (l in Locs) (departure[l] <= late[l]);
19 solve minimize arrival[depot];

In order to generate initial incumbent solutions for the TSPTW instances, we created a
MiniZinc model for a constrained satisfaction problem from Listing 2 by replacing line 19
with solve satisfy. We used the Gecode [6] CP solver (without LNS) with a timeout
of 10 minutes to find for each instance a solution to be used as the initial incumbent solution.
For some instances, no solution was found before timing out, and they are therefore not used.

8 Results

We ran our experiments on a desktop computer with an ASUS PRIME Z590-P motherboard,
a 3.5 GHz Intel Core i9 11900K processor, and four 16 GB 3200 MT/s DDR4 memories,
running Ubuntu 22.04.4 LTS with GCC (the GNU Compiler Collection) 11.

For each selection heuristic, both with DCS and without DCS, and each problem instance,
we ran 10 independent runs, each under a timeout of 3 minutes from the same initial
incumbent solution.

We used the scoring function 100 · (o − b) ÷ i proposed in [1] and used in [24], where for
each instance, the mean objective value over the 10 independent runs is denoted by o, the
best found objective value over any run for the instance is denoted by b, and the objective
value of the initial incumbent solution is denoted by i. Therefore, the scores range over the
closed continuous interval [0, 100], where a low score is better than a high one.

The results are shown in Table 1 and Figure 4. For all generic selection heuristics, using
DCS improves performance for RCS, SMSD, and TSPTW, but worsens performance for
JSP. These results support our conjectures that using DCS improves performance for RCS
and SMSD, but does not improve performance for JSP. For JSP and each generic selection
heuristic except VRG-LNS, using DCS has significantly worse performance than not using
it. For JSP and VRG-LNS, using DCS has similar performance to not using it. However,
there are a few JSP instances where using DCS with VRG-LNS, PG-LNS, and RPG-LNS

CP 2025

20:14 Dependency-Curated Large Neighbourhood Search

p1

p2

p3

d1

d2

d3

t′
1

t′
2

t′
3

d4

d5

d6

a1

a2

a3

d7

d8

δ2

δ3

d10

d9

d11

δ′
1

δ′
2

δ′
3

Figure 3 The cyclic dependency graph for the TSPTW MiniZinc model of Listing 2 with 3 locations
(for ease of readability). Variable pℓ denotes pred[ℓ], variable t′

ℓ denotes durFromPred[ℓ], variable aℓ

denotes arrival[ℓ], variable δℓ denotes departure[ℓ], and variable δ′
ℓ denotes departurePred[ℓ].

The depot is location 1 and the objective variable is a1. Vertices d1, d2, and d3 correspond to the
dependency constraints on lines 8–9; vertices d4, d5, and d6 correspond to lines 15–16; vertices d7

and d8 correspond to lines 11–12; vertices d9, d10, and d11 correspond to lines 13–14; and the vertices
with grey backgrounds together form an SCC, while each other SCC has a single vertex. The
constraints on lines 17 and 18 are non-dependency constraints and are therefore absent in the graph.

has significantly better performance than when not using it. For RCS and each selection
heuristic, the performance of using DCS is significantly better than when not using it. For
both SMSD and TSPTW and each selection heuristic, the performance of using DCS is
better than when not using it. Additionally, for RCS, SMSD, and TSPTW, using DCS makes
the naïve randomised LNS competitive with the remaining more elaborate generic selection
heuristics, even when they use DCS.

9 Conclusion and Future Work

We have presented our dependency curation scheme (DCS), which can be used with any
(generic or problem-specific) LNS selection heuristic. We have compared the performance of
a naïve generic randomised selection heuristic and more elaborate state-of-the-art generic
selection heuristics from the literature both with and without DCS, revealing overall improved

Table 1 The mean score for 72 JSP instances, 79 RCS instances, 80 SMSD instances, and 112
TSPTW instances, each over 10 independent runs, both with and without the dependency curation
scheme (DCS), for CIG-LNS, PG-LNS, randomised LNS, RPG-LNS, and VRG-LNS, where the “no”
and “yes” columns denote if DCS was used or not. Boldface indicates the best performance on each
row.

CIG-LNS PG-LNS Randomised LNS RPG-LNS VRG-LNS
DCS no yes no yes no yes no yes no yes

JSP 0.13 7.45 7.30 28.53 0.18 18.37 32.68 18.35 32.20 33.19

RCS 22.11 0.47 9.94 0.48 24.72 0.34 9.93 0.43 20.35 0.63

SMSD 1.62 0.87 4.06 0.67 1.14 0.85 5.64 0.73 6.45 0.81

TSPTW 4.65 1.82 3.67 1.36 4.87 2.18 3.71 1.80 5.41 2.20

F. Knutar Lewander, P. Flener, and J. Pearson 20:15

Figure 4 The scores for 72 JSP instances, 79 RCS instances, 80 SMSD instances, and 112 TSPTW
instances, each over 10 independent runs, both with and without the dependency curation scheme
(DCS), for VRG-LNS, RPG-LNS, CIG-LNS, PG-LNS, and randomised LNS. Each marker is the
mean score over 10 independent runs for a selection heuristic, where a low score corresponds to a
high-quality solution. Each marker over the diagonal line corresponds to DCS worsening performance.
Conversely, each marker under the diagonal line corresponds to DCS improving performance.

performance when using DCS. Our experiments show that the performance of using DCS with
the naïve randomised selection heuristic is competitive with the more elaborate state-of-the-art
generic selection heuristics, even when they use DCS.

In future work, we intend to implement for our extension of the Gecode-based portfolio
solver [11] our dependency curation scheme, so that the solver works without the modeller
needing to provide (a generator that finds) a set of search variables. Once our scheme
is implemented, we intend to compare the performance of the generic selection heuristics,
both with and without DCS, on all optimisation problems in the MiniZinc [17] benchmark
repository, to verify the results of this paper and to compare our extended Gecode-based
portfolio solver with other state-of-the-art optimisation solvers. Additionally, we intend
to extend the (non-portfolio) Gecode [6] CP solver by implementing our scheme and a
naïve randomised generic LNS selection heuristic, thereby allowing a modeller to easily use
competitive LNS for any MiniZinc constrained optimisation model.

CP 2025

20:16 Dependency-Curated Large Neighbourhood Search

Also, for VRG-LNS, a variable is selected for exclusion from the freeze set if it shares a
constraint with a previously excluded variable x. When used with DCS, each variable y that
does not share a constraint with x but that transitively functionally defines a variable that
does so should be eligible for selection. Our idea is to make this modification to VRG-LNS
and empirically test if it improves performance when used with DCS.

Finally, we intend to create a generic branching heuristic for CP-style tree search, where
the variables that are selected to be branched over must be a subset of the low-cardinality
set of search variables found by DCS.

References
1 H. Murat Afsar, Christian Artigues, Eric Bourreau, and Safia Kedad-Sidhoum. Machine

reassignment problem: The ROADEF/EURO Challenge 2012. Annals of Operations Research,
242:1–17, 2016. doi:10.1007/s10479-016-2203-7.

2 Russell Bent and Pascal Van Hentenryck. A two-stage hybrid algorithm for pickup and
delivery vehicle routing problems with time windows. Computers and Operations Research,
33(1):875–893, January 2006. doi:10.1016/j.cor.2004.08.001.

3 Gustav Björdal, Pierre Flener, and Justin Pearson. Generating compound moves in local
search by hybridisation with complete search. In Louis-Martin Rousseau and Kostas Stergiou,
editors, CP-AI-OR 2019, volume 11494 of LNCS, pages 95–111. Springer, 2019. doi:10.1007/
978-3-030-19212-9_7.

4 Gustav Björdal, Jean-Noël Monette, Pierre Flener, and Justin Pearson. A constraint-based
local search backend for MiniZinc. Constraints, 20(3):325–345, July 2015. doi:10.1007/
s10601-015-9184-z.

5 Mehmet Dincbas, Helmut Simonis, and Pascal Van Hentenryck. Solving the car-sequencing
problem in constraint logic programming. In Yves Kodratoff, editor, ECAI 1988, pages 290–295.
Pitman, 1988.

6 Gecode Team. Gecode: A generic constraint development environment, 2019. The Gecode
solver and its MiniZinc backend are available at https://www.gecode.org.

7 Michel Gendreau, Alain Hertz, Gilbert Laporte, and Mihnea Stan. A generalized insertion
heuristic for the traveling salesman problem with time windows. Operations Research, 46(3):330–
335, 1998. doi:10.1287/opre.46.3.330.

8 Daniel Godard, Philippe Laborie, and Wim Nuijten. Randomized large neighborhood search
for cumulative scheduling. In Susanne Biundo, Karen L. Myers, and Kanna Rajan, editors,
ICAPS 2005, pages 81–89. AAAI Press, 2005. URL: http://www.aaai.org/Library/ICAPS/
2005/icaps05-009.php.

9 Jayant Kalagnanam, Milind Dawande, Mark Trumbo, and Ho Lee. Inventory matching
problems in the steel industry. IBM Research Report, Computer Science/Mathematics, April
1999.

10 Frej Knutar Lewander, Pierre Flener, and Justin Pearson. Invariant graph propagation in
constraint-based local search. Journal of Artificial Intelligence Research, 2025. Forthcoming.

11 Dexter Leander. Building portfolio search in Gecode for MiniZinc. Master’s thesis, Department
of Information Technology, Uppsala University, Sweden, September 2024. Available at https:
//urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-533041, with the code at https://github.
com/DLeander/gecode-dexter.

12 Michele Lombardi and Pierre Schaus. Cost impact guided LNS. In Helmut Simonis,
editor, CP-AI-OR 2014, volume 8451 of LNCS, pages 293–300. Springer, 2014. doi:
10.1007/978-3-319-07046-9_21.

13 Toni Mancini and Marco Cadoli. Exploiting functional dependencies in declarative problem
specifications. Artificial Intelligence, 171(16–17):985–1010, November 2007. doi:10.1016/j.
artint.2007.04.017.

https://doi.org/10.1007/s10479-016-2203-7
https://doi.org/10.1016/j.cor.2004.08.001
https://doi.org/10.1007/978-3-030-19212-9_7
https://doi.org/10.1007/978-3-030-19212-9_7
https://doi.org/10.1007/s10601-015-9184-z
https://doi.org/10.1007/s10601-015-9184-z
https://www.gecode.org
https://doi.org/10.1287/opre.46.3.330
http://www.aaai.org/Library/ICAPS/2005/icaps05-009.php
http://www.aaai.org/Library/ICAPS/2005/icaps05-009.php
https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-533041
https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-533041
https://github.com/DLeander/gecode-dexter
https://github.com/DLeander/gecode-dexter
https://doi.org/10.1007/978-3-319-07046-9_21
https://doi.org/10.1007/978-3-319-07046-9_21
https://doi.org/10.1016/j.artint.2007.04.017
https://doi.org/10.1016/j.artint.2007.04.017

F. Knutar Lewander, P. Flener, and J. Pearson 20:17

14 Laurent Michel, Pierre Schaus, and Pascal Van Hentenryck. MiniCP: A lightweight solver
for constraint programming. Mathematical Programming Computation, 13(1):133–184, 2021.
The source code and teaching materials are available at http://minicp.org. doi:10.1007/
s12532-020-00190-7.

15 Laurent Michel and Pascal Van Hentenryck. Localizer: A modeling language for local search.
In Gert Smolka, editor, CP 1997, volume 1330 of LNCS, pages 237–251. Springer, 1997.
doi:10.1007/BFb0017443.

16 Laurent Michel and Pascal Van Hentenryck. Localizer. Constraints, 5(1–2):43–84, 2000.
doi:10.1023/A:1009818401322.

17 Nicholas Nethercote, Peter J. Stuckey, Ralph Becket, Sebastian Brand, Gregory J. Duck, and
Guido Tack. MiniZinc: Towards a standard CP modelling language. In Christian Bessière,
editor, CP 2007, volume 4741 of LNCS, pages 529–543. Springer, 2007. The MiniZinc toolchain
is available at https://www.minizinc.org. doi:10.1007/978-3-540-74970-7_38.

18 Laurent Perron, Paul Shaw, and Vincent Furnon. Propagation guided large neighborhood
search. In Mark Wallace, editor, CP 2004, volume 3258 of LNCS, pages 468–481. Springer,
2004. doi:10.1007/978-3-540-30201-8_35.

19 David Pisinger and Stefan Ropke. Large neighborhood search. In Michel Gendreau and
Jean-Yves Potvin, editors, Handbook of Metaheuristics, volume 272 of ORMS, chapter 4, pages
99–127. Springer, 2019. doi:10.1007/978-3-319-91086-4_4.

20 Charles Prud’homme, Xavier Lorca, and Narendra Jussien. Explanation-based large neighbor-
hood search. Constraints, 19(4):339–379, October 2014. doi:10.1007/s10601-014-9166-6.

21 Pierre Schaus. Variable objective large neighborhood search: A practical approach to solve
over-constrained problems. In Alexander Brodsky, editor, ICTAI 2013, pages 971–978. IEEE
Computer Society, 2013. doi:10.1109/ICTAI.2013.147.

22 Pierre Schaus, Pascal Van Hentenryck, Jean-Noël Monette, Carleton Coffrin, Laurent Michel,
and Yves Deville. Solving steel mill slab problems with constraint-based techniques: CP, LNS,
and CBLS. Constraints, 16(2):125–147, April 2011. doi:10.1007/s10601-010-9100-5.

23 Paul Shaw. Using constraint programming and local search methods to solve vehicle routing
problems. In Michael Maher and Jean-François Puget, editors, CP 1998, volume 1520 of
LNCS, pages 417–431. Springer, 1998. doi:10.1007/3-540-49481-2_30.

24 Filipe Souza, Diarmuid Grimes, and Barry O’Sullivan. An investigation of generic approaches
to large neighbourhood search. In Paul Shaw, editor, CP 2024, volume 307 of LIPIcs, pages
39:1–39:10. Dagstuhl Publishing, 2024. doi:10.4230/LIPIcs.CP.2024.39.

25 Robert Tarjan. Depth-first search and linear graph algorithms. SIAM Journal on Computing,
1(2):146–160, 1972. doi:10.1137/0201010.

26 Charles Thomas and Pierre Schaus. Revisiting the self-adaptive large neighborhood search.
In Willem-Jan van Hoeve, editor, CP-AI-OR 2018, volume 10848 of LNCS, pages 557–566.
Springer, 2018. doi:10.1007/978-3-319-93031-2_40.

27 Pascal Van Hentenryck and Laurent Michel. Constraint-Based Local Search. The MIT Press,
2005.

28 Gerhard Wäscher and Thomas Gau. Heuristics for the integer one-dimensional cutting stock
problem: A computational study. OR Spektrum, 18:131–144, 1996. doi:10.1007/BF01539705.

CP 2025

http://minicp.org
https://doi.org/10.1007/s12532-020-00190-7
https://doi.org/10.1007/s12532-020-00190-7
https://doi.org/10.1007/BFb0017443
https://doi.org/10.1023/A:1009818401322
https://www.minizinc.org
https://doi.org/10.1007/978-3-540-74970-7_38
https://doi.org/10.1007/978-3-540-30201-8_35
https://doi.org/10.1007/978-3-319-91086-4_4
https://doi.org/10.1007/s10601-014-9166-6
https://doi.org/10.1109/ICTAI.2013.147
https://doi.org/10.1007/s10601-010-9100-5
https://doi.org/10.1007/3-540-49481-2_30
https://doi.org/10.4230/LIPIcs.CP.2024.39
https://doi.org/10.1137/0201010
https://doi.org/10.1007/978-3-319-93031-2_40
https://doi.org/10.1007/BF01539705

	1 Introduction
	2 Constraint-Based Local Search
	3 The Dependency Graph of a CP Model
	4 Example: Relaxed Car Sequencing (RCS)
	5 Large Neighbourhood Search
	5.1 Randomised LNS
	5.2 Propagation Guided LNS and Reverse Propagation Guided LNS
	5.3 Cost Impact Guided LNS
	5.4 Variable-Relationship Guided LNS

	6 Dependency Curation for LNS
	7 Experiments
	7.1 Setup
	7.2 Problem Selection
	7.2.1 Steel Mill Slab Design (SMSD)
	7.2.2 Job Shop (JSP)
	7.2.3 Travelling Salesperson with Time Windows (TSPTW)

	8 Results
	9 Conclusion and Future Work

