Invariant Graph Propagation in Constraint-Based Local Search
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In constraint-based local search, an assignment to the search variables is improved upon by an iterative procedure that
replaces the current assignment with a similar assignment. The latter is selected by a heuristic that assesses the qualities
of a subset of all similar assignments, where the quality of such assignments is determined via a process called invariant
graph propagation. Since, typically, many similar assignments are considered in every iteration, invariant graph propagation
must be as efficient as possible. Since invariant graph propagation is independent of the selection heuristic, any comparison
between different invariant graph propagation styles under different selection heuristics can be misleading. In this paper, we
describe and compare both theoretically and empirically the throughput of several invariant graph propagation styles, and
give criteria when one style or another is to be used.
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1 Introduction

Constraint-based local search (CBLS) is a technology where constraint satisfaction problems and constrained
optimisation problems are modelled and solved. It typically scales well to larger problem instances, at the
expense that it does not provide the guarantee of optimality that systematic-search technologies (such as integer
programming and constraint programming) offer. In CBLS, a problem is modelled by a directed graph, called
the invariant graph, with variables and invariants as nodes, where each invariant defines some variables in terms
of others. A current assignment to the source variables of the graph is initialised and then iteratively replaced
with a selected similar assignment, called a neighbour. Much research has been done on selection heuristics,
which focus on what neighbours to probe and how to select a neighbour at each iteration, and on how to escape
local optima of the objective function. Independent of the selection heuristic is the assessment of the quality
of a neighbour and the replacement of the current assignment with a neighbour, both performed by a process
called invariant graph propagation, where the non-source variables are updated according to the invariants. The
efficiency of invariant graph propagation is crucial for the overall performance of a CBLS solver.
After we give the necessary background (Section 2), our contributions are:
o the collection of invariant graph propagation algorithms from the literature and their presentation in a
uniform way (Sections 3.1 to 3.4);
e proofs of correctness for the presented invariant graph propagation algorithms;
o the computation of the time complexities of these algorithms (Section 3.5);
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o the theoretical comparison of these time complexities, to recommend an invariant graph propagation
algorithm based on features of a given invariant graph (Section 3.6);

o the measuring of the throughput (number of probes per second) of the algorithms for various invariant
graphs, validating our recommendations (Section 4).

Finally, we conclude in Section 5.

Note that we here assume that the value of each sink node variable (such as the objective variable) must be
updated. However, a selection heuristic could be extended to choose only some variables (typically a subset of the
sink node variables) whose values must be updated [13], possibly improving the throughput of invariant graph
propagation as the values of fewer variables must be updated. In the worst case, which happens often in CBLS,
the extended selection heuristic would choose all sink node variables, as in our assumption. Note that no such
assumption is made in [13], as their use case is not CBLS and does not have the notion of a selection heuristic.
Additionally, they have a single algorithm and therefore perform no comparisons of algorithms. Because of our
assumption, the computation of the time complexities of invariant graph propagation algorithms in Section 3.5,
our recommendation of an invariant graph propagation algorithm in Section 3.6, and the measuring of the
throughput in Section 4 are restricted to invariant graphs where the values of all sink node variables are always
required to be updated.

2 Background

CBLS was made popular by Comet [23] and its predecessor Localizer [18, 24, 17]. Many other CBLS solvers
have been designed, such as iOpt [26], Kangaroo [20], Hexaly (formerly known as LocalSolver) [4], InCELL [21],
OscaR.cbls [6], fzn-oscar-cbls [5], Yuck [16], and Athanor [1, 2]. The source code of Localizer, iOpt, and Kangaroo
is currently unobtainable to the public; Hexaly is commercial, and so was Comet.

We now present the concepts of CBLS that are relevant to our purpose, using a running example of how
a constraint satisfaction problem is modelled in CBLS before giving a detailed comparison with related work
in Section 2.10. Note that all concepts are defined mathematically: efficient implementations in terms of data
structures and algorithms will be discussed in Section 3.

2.1 Constraint-Based Local Search

In CBLS, a problem is modelled by a directed graph, called the invariant graph, with variables and invariants
as nodes, where each invariant defines some variables in terms of others. A current assignment to the source
variables of the graph is initialised and then iteratively replaced with a selected similar assignment, called a
neighbour. During each iteration, first some neighbours are probed, where their quality is determined, and then a
neighbour is selected to be moved to, where the current assignment is replaced by it. Both probing and moving are
performed by a process called invariant graph propagation, where the non-source variables are updated according
to the invariants.

In order to perform invariant graph propagation efficiently, the current assignment must be initialised so
that the following loop condition holds for all iterations: the value of each variable is (uniquely) determinable
under the current assignment. Before an iteration, the loop condition must hold, and it must also hold for the
probed neighbour that is selected by the selection heuristic, as it becomes the new current assignment. This
loop condition is present in the CBLS solvers Localizer [24], iOpt [26], Comet [23], Kangaroo [20], Hexaly [4],
InCELL [21], OscaR.cbls [6], Yuck [16], and Athanor [1, 2], and by extension also in fzn-oscar-cbls [5], which
makes use of OscaR.cbls.
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Fig. 1. A chessboard that depicts a solution to the n-queens problem for n = 8.

-

nt: n; % number of queens
% Row[c] = the row of the queen in column c;

% enforces that all queens are in distinct columns:
array[l..n] of var 1..n: Row;

% all queens are in distinct rows:

constraint all_different ( Row ) ;

% all queens are in distinct upward diagonals:
constraint all_different ([Row[c]+c | ¢ in 1..n]);

% all queens are in distinct downward diagonals:
constraint all_different ([Row[c]-c | ¢ in 1..n]);

Listing 1. A MiniZinc model for the n-queens problem.

2.2 Running Example: The n-Queens Problem

In order to show how a constraint satisfaction problem is modelled in CBLS, we now give a running example
that will be used throughout Section 2. The n-queens problem consists of n queens that are to be placed on an n
by n chessboard such that no two queens are on the same row, column, or diagonal. Figure 1 depicts a solution to
the 8-queens instance.

A model for n-queens in the solver-independent MiniZinc language [19] is in Listing 1. Line 1 declares the
parameter n. Line 4 declares the array Row of n decision variables, where Row [c] denotes the row of the queen
in column c, thereby enforcing that no two queens are on the same column. The three constraints on lines 6
to 10 enforce that no two queens are on the same row, upward diagonal, or downward diagonal, respectively.

2.3 Invariants, Input Variables, and Output Variables

An invariant, called a one-way constraint in [26], functionally defines some variables, called its output variables,
by a total deterministic function on one or more variables, called its input variables, and must invariably hold at
all iterations of the local search. A variable may not be an output variable of more than one invariant.
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I : Sum({xs, x2}. ) —><ZD\k
L:ze=y- x; —>@

Fig. 2. An invariant graph with five variables, {x1, x2, x3, y, z}; three search variables, {x1, x2, x3}; two invariants, {I;,I2};
and one probed variable, z. The variables x; and x3 are the inputs to Iy, while x3 and y are the inputs to I. The variable y is
the output of I and z is the output of I,.

3

I

For example, given the variable set X and the variable y, the Sum(X, y) invariant functionally defines the
output variable y to be the sum of the input variables x of X, and is here denoted by y <= 3, c x x instead of the
syntax y = )¢ x X of an equality constraint.

2.4 Invariant Graphs, Search Variables, and Probed Variables

The invariants and variables together induce a directed graph, called the invariant graph, where the variables and
invariants are the nodes. There is an edge from each variable x to each invariant that x is an input to and there is
an edge from each invariant to each of its output variables. If there is a path from node u to node v, then v is said
to depend on u.

Consider an invariant graph G with nodes N and edges &. No invariant I € N is a source or sink node of G,
as there exists at least one edge in & to I from its input variables and there exists at least one edge in & from I to
its output variables. Thus, all source and sink nodes in G are variables. Each source node in G is called a search
variable, as it is not an output variable of any invariant and is instead assigned a value by search (see Section 2.9).
Each sink node in G is called a probed variable, such as the objective variable of an optimisation problem, as its
value is assessed by the selection heuristic. If a variable x is neither an input to some invariant nor an output of
some invariant, then x is both a search variable and a probed variable. An example of an invariant graph is given
in Figure 2, where circled nodes are variables and boxed nodes are invariants.

In Kangaroo [20] each invariant and its output variables are merged into a single node in the invariant graph.
In Hexaly [4] and InCELL [21] the invariant graph is required to be acyclic. In fzn-oscar-cbls [5] and Yuck [16]
the invariant graph is created from a high-level MiniZinc [19] model, which has no syntax for invariants. In
Athanor [1, 2] the invariant graph is instead created from the abstract syntax tree of an Essence [9] model, which
also has no syntax for invariants.

2.5 Assignments and Values

In CBLS, each variable has an associated value at any time of the search (see Section 2.9). The value of each search
variable is initialised when search starts and potentially updated during search. The value of each non-search
variable x is recursively given by the invariant I with x as output variable and the values of the input variables
toI:

Definition 2.1 (assignment and value). Consider an invariant graph with variables V and the set S € V of
search variables. An assignment is a total function «: S — Z that maps each search variable to an integer value.
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The value v, (x) of variable x € V under assignment « is recursively determined as follows:

a(x) ifxeS
Va(x) = vq(e) otherwise, where x <= e is the invariant that defines variable x,
and v, is pushed down to the operands of expression e.

For example, consider the variables X = {xi,...,x,}, the variable y, the SuM(X, y) invariant y &= ¢ x X,
and an assignment a. The value of y under « is

Va(y) = Vg (Z X) = Z Vo (x)

xeX xeX

2.6 Hard, Softened, Soft, and Implicit Constraints

In a satisfaction or optimisation problem, a constraint is a relation over some variables that must be satisfied
in each solution. For example, for the variables X = {x1,...,x,} and an assignment «, the AllDifferent(X)
constraint is the n-ary relation over X that requires the values of the variables in X to be pairwise distinct, that
isV1<i<j<n:ve(x;) # ve(xj).

A hard equality constraint of a problem can (but does not have to) be modelled by an invariant that defines
one of its variables. For example, the constraint y = }}, . v x can be modelled as the Sum(X, y) invariant, which
can even be rewritten by the solver into Sum(X \ {x} U {-y}, —x) for some x € X, if that is preferable for some
reason.

A hard constraint of a problem can be softened by the modeller into an invariant, called a violation invariant,
that functionally defines a variable y, called a violation variable, so that v, (y) = 0 if the constraint is satisfied
under the assignment «, else v,(y) > 0 and v,(y) is typically proportional to the amount of violation of the
constraint under « (rather than always the value 1). The softened constraints of a problem may thus be violated
during search (see Section 2.9), but the aim is to satisfy them all, as they are actually hard. The soft constraints of
an optimisation problem are also modelled by violation invariants.

For example, a hard AllDifferent(X) constraint can be softened into the violation invariant ALLDIFFERENT(X, y),
which defines the violation variable y to be the minimum number of variables of X whose values need to be
updated for the constraint to become satisfied. For instance, consider n = 5 and an assignment a with v, (x;) =
Va(x2) = Va(x3) = 1 and vy (x4) = vo(xs) = 2. We have v, (y) = 2+ 1 = 3, as at least two variables among x1, x2,
and x3 as well as at least one variable among x; and x5 must get suitable new values for the constraint to become
satisfied.

The sum of the violation variables of the softened hard constraints of a problem is called the total violation
variable and is defined by a Sum invariant. The value it takes under an assignment « indicates how close « is to
denoting a solution, where 0 corresponds to a solution and a positive value corresponds to a non-solution. The
invariant graph for a satisfaction problem then corresponds to an optimisation problem where the total violation
variable is probed and is the objective variable that is to be minimised, ideally down to 0, but this is impossible
for an unsatisfiable problem instance. Conversely, the invariant graph for an optimisation problem can have the
total violation variable of the softened hard constraints, the total violation variable of the soft constraints, and the
objective variable as probed variables, or make them inputs to an invariant that arithmetically combines them
into a unique probed variable.

For example, consider the n-queens problem (see Section 2.2). A naive invariant graph is in Figure 3 and
corresponds to Listing 1. The output violation variables vy, vz, and v3 take the value 0 if there are no queens on
the same upward diagonal, downward diagonal, and row respectively, otherwise they take the number of queens
that have to be moved away from shared such slices of the chessboard. The probed total violation variable v is
the sum of v1, v, and v5: any assignment where v is 0 is a solution to the problem.
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I; : ALLDIFFERENT ({r1, 72, ..., n},01) b————>

I : ALLDIFFERENT({r; + 1,72 + 2,...,r, + n},0s) —>@—> I, : Sum({v1, 09,03} ,0) —>@

I3 : ALLDIFFERENT({r{ — 1,12 — 2,...,r, — n},03) >

Fig. 3. Naive invariant graph for the n-queens problem: it has n + 4 variables; n search variables, {ry,r2,...,rn}; 1 probed
variable, v; 4 invariants, {Iy, I3, I3, I,}; and 3 violation invariants, {I;,I5,13}. For simplicity, the additions and subtractions to
the input variables of invariants Iz and I3 are not depicted as further invariants.

a I : ALLDIFFERENT({r{ + 1,72+ 2,...,r, + n},03) QGD\‘
. Lsso(oon) o) ()

‘ Is : ALLDIFFERENT({r; — 1,73 — 2,...,Fp — 1}, 03) _)@'

Fig. 4. Good invariant graph for the n-queens problem: it has n + 3 variables; n search variables, {ry,r2,...,rn}; 1 probed
variable, v; 3 invariants, {I,13,1,}; and 2 violation invariants, {I2,I3}. This is a subgraph of Figure 3 as nodes I; and v; were
removed: the constraint that there is at most one queen per row was made implicit.

A hard constraint of a problem can also be made implicit by the modeller: it is not in the invariant graph
given to the solver, but made to hold for all assignments by an initialisation heuristic and a selection heuristic
(see Section 2.9), both provided by the modeller, that both only consider assignments that satisfy the constraint.
For example, the AllDifferent(X) constraint is made implicit in the initial assignment a when the values of the
variables in X are distinct under «. If no such initial assignment exists, then there exists no solution to the
problem instance. During search, only assignments where the values of the variables in X remain distinct must
then be considered. If the variables in X are search variables, then this is done by swapping the values of two
variables or by updating the value of a variable to some value of no other variable.

For example, reconsider the n-queens problem. A good invariant graph is in Figure 4, as the constraint in line 6
of Listing 1 was made implicit.

2.7 Static and Dynamic Input Variables and Invariants

For an invariant, only a subset of the input variables under an assignment & might be required to determine the
values of its output variables under a.
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For example, consider the array X = [xy,. .., x,] of variables as well as the variables i and y. The ELEMENT(X, i, i)
invariant defines y to be equal to the variable in X at index i, denoted by y &= X[i]. Variable i is required under
almost all assignments for determining the value of y; as an example of an exception, if all variables in X are
the same variable, [x, x, ..., x], then i is not actually required for determining the value of y. We say that each
such input variable is a static input variable. However, only one of the other input variables, namely X [v,(i)], is
required under any assignment « to determine v, (y), but we do not know up-front which one: variable i has a
different status than all variables of X. We say that each such input variable is a dynamic input variable.

As another example, consider the variables v, x, y, and z, where v takes a non-negative value and typically
is a violation variable. The IFTHENELSE (v, X1, X2, y) invariant defines y to be equal to x; if v takes value 0, and
otherwise defines y to be equal to x,. Variable v is a static input variable, while variables x; and x, are dynamic
input variables.

Definition 2.2 (static and dynamic invariants). If an invariant has one or more dynamic input variables, then it
is called a dynamic invariant, else it is called a static invariant.

Static and dynamic invariants will be handled differently in the rest of this paper. For a CBLS solver, some
invariants can be implemented as dynamic invariants (such as ELEMENT and IFTHENELSE), but some invariant
propagation algorithms sometimes require a static counterpart (where all input variables are static inputs), as
we will see in Section 3.4.1. A static counterpart of a dynamic invariant can always safely be used, but with a
performance loss, as we will see in Section 3.5.

2.8 Static and Dynamic Cycles in an Invariant Graph

Consider an acyclic invariant graph (such as required by Hexaly and InCELL) with the variables V and an
assignment a. For each variable x € V, its value v, (x) is determined because (i) variable x is output of at most
one invariant and (ii) variable x cannot depend on itself since the invariant graph is acyclic. Requiring the
invariant graph to be acyclic thus trivially satisfies the CBLS loop condition (see Section 2.1). If the value of a
variable is not determinable, then it is undeterminable as the variable either takes no or more than one value.

Other CBLS solvers allow cyclic invariant graphs, as not all cycles violate the loop condition that the value of
each variable is determinable under the current assignment. Cycles actually enable legitimate and competitive
models for many problems, such as the travelling salesperson problem with time windows [3] (see Section 4.3).
The potential presence of cycles in an invariant graph makes the satisfaction of the CBLS loop condition a subtle
issue, as discussed next.

If an invariant graph has a cycle where each edge to an invariant originates from a static input variable, then it
is not guaranteed that the values of all output variables of all invariants in that cycle are determinable under all
assignments. As a minimal but artificial example, consider assignment « and the static invariant y &= x - y with
both x and y as static inputs, and y also as output: if v, (x) = 0, then v,(y) is determined to be 0, otherwise the
value of y is undeterminable, as y either takes more than one value or no value for v,(x) = 1 and v,(x) ¢ {0, 1}
respectively. We now define two types of cycles in an invariant graph.

Definition 2.3 (static and dynamic cycles). Consider an invariant graph with a cycle c. If there exists an edge
in ¢ from a dynamic input variable to an invariant, then c is called a dynamic cycle, else c is called a static cycle.

For example, the real-world invariant subgraph in Figure 5 (whose grey backgrounds of some nodes will be
explained in Section 3.4.1) has the dynamic cycle (y1, Iz, y2, 11, y1) because of, for instance, the edge from the
dynamic input variable y; to the dynamic invariant I;.

In theory, the detection if the value of each variable on a static cycle under an assignment is determinable is
possible using a complete solver (such as a constraint programming solver). In practice however, this is not done
by any CBLS solver as it would be too inefficient. Therefore, the invariant graph must not contain static cycles.
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@ ————— >| I : ELEMENT( [y, X2], iz, Y2) —»@

Fig. 5. A cyclic invariant subgraph with six variables, {x1, x2, i1, i2, y1, y2}; two dynamic invariants, {I1, I2}; two static input
variables, {i1, iz}, with outgoing solid edges; four dynamic input variables, {x1, x2, y1, y2}, with outgoing dashed edges; and
two output variables, {y1,y2}. The cycle (y1,12,y2,11,y1) is dynamic. The white nodes are in level 1, and the grey ones
in level 2 (see Section 3.4.1). This is a subgraph of an invariant graph for the travelling salesperson problem with time
windows [3] (see Section 4.3), where y; and yz are the arrival times at two different locations.

We will show at the end of this subsection how an invariant graph with static cycles can be transformed into an
equivalent invariant graph without static cycles.

If an invariant graph has a cycle where at least one edge to an invariant originates from a dynamic input
variable, then there may exist an assignment under which the values of all output variables of all invariants in that
cycle are determined. As a minimal but artificial example, consider the dynamic invariant ELEMENT([x, y], i, y),
which denotes y <= [x, y][i], with variable i as static input, variables x and y as dynamic inputs, and y also as
output: if i is 1 (note that we index from 1 throughout this paper), then y takes the same (and determined) value
as x, else the value of y is undeterminable. Some CBLS solvers, such as Localizer, Comet, and OscaR.cbls, make
use of algorithms that have preconditions on the dynamic cycles of the invariant graph, hence they only allow
specific dynamic cycles (see Section 3.4.1); other CBLS solvers, such as Hexaly and InCELL, allow no dynamic
cycles; and the remaining CBLS solvers, such as iOpt and Kangaroo, allow all dynamic cycles

Any cyclic invariant graph G can be automatically made acyclic [5]. In particular, each invariant graph with
static cycles must be transformed by the modeller or solver into an invariant graph without static cycles, as there
is otherwise no guarantee that the values of all variables are determinable under all assignments. A cycle ¢ is
removed from the invariant graph by splitting one output and input variable x on ¢ into an output variable x; and
an input variable x, and softening their equality constraint x; = x; into the violation invariant v <= |x; — x2|
or v & min(1, |x; — x3|), with the new violation variable v added as another input to the Sum invariant that
defines the total violation variable [5]. Note that adding search variables and equality violation invariants typically
worsens the performance of a CBLS solver, as additional variables and invariants must be considered in probes
and moves. Furthermore, finding a solution then becomes more difficult for a CBLS solver, as the value of each
additional violation variable must be zero in every solution. We discuss dynamic cycles further in Section 3.2.

2.9 Search, Initialisation, Neighbours, Selection, Probes, Moves, Heuristics

A CBLS solver conducts search by maintaining a current assignment, which is initialised by an initialisation
heuristic and then iteratively updated by a selection heuristic, both provided by the modeller or solver.
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Definition 2.4 (neighbour). A neighbour of an assignment « is an assignment ¢’ where the values of one or
more search variables are different from those under a. Each variable x with v, (x) # v, (x) is called an updated
variable, whether it is a search variable or not.

At every iteration of local search, the selection heuristic explores a non-empty subset of the neighbours of the
current assignment:

Definition 2.5 (probe and probing). Consider an invariant graph and a neighbour @’ of the current assignment.
The determination of the values of the probed variables under o is called probing a’ or making a probe of o’.

After probing, the selection heuristic selects one probed neighbour and makes it the current assignment,
thereby the current iteration of local search is ended:

Definition 2.6 (move and moving). Consider a probed and selected neighbour &’ of the current assignment a.
The switch to o’ as the current assignment is called moving from « to «’ or making a move to a’.

When probing a neighbour «’ of the current assignment, if the value of some variable is undeterminable
under a’, which both can happen when the variable is on a dynamic cycle, then o’ may not be selected and
moved to.

In Localizer [17], probing a neighbour is called simulating a move. In Comet [23], probing is called simulating.
In Kangaroo [20], probing and moving are referred to as being in the simulation and execution phases respectively.

In practice, one also needs a meta-heuristic, provided by the modeller or the solver itself, in order to break out
from local optima of the probed variables. Two popular meta-heuristics are simulated annealing [14] and tabu
search [11].

Consider the n-queens problem (see Section 2.2). The good invariant graph in Figure 4 is generated automatically
from the MiniZinc model in Listing 1 by fzn-oscar-cbls [5]: the hard constraints of the model are softened or
made implicit automatically, instead of by the modeller. The generated selection heuristic only considers moves
that swap the values of two of the variables in {r,rs,...,r,}.

2.10 Related Work

Invariant graph propagation algorithms were inspired by algorithms for updating graphical user interfaces as
well as for circuit simulations [Alpern:IncEvalOfCompCircuits, 7, 22, 12, 13].

There are two main invariant graph propagation styles, here called output-to-input and input-to-output. The
output-to-input propagation style is called the nullification/reevaluation approach in [22], the mark-sweep strategy
in [25, 26], and the mark-sweep approach in [20]; it is used in iOpt [26] and Kangaroo [20]; it is a recursive
approach that starts with the probed variables and ends with the search variables. Conversely, the input-to-output
propagation style is called the topological ordering strategy in [22, 25] and the incremental graph evaluation
in [12]; it is used in Localizer [17], iOpt [26], Comet [23], Hexaly [4], InCELL [21], OscaR.cbls [6], Yuck [16], and
Athanor [1, 2]; it is an iterative approach that starts with the search variables and ends with the probed variables.

With risk of oversimplification, we here label each instance of an algorithm as either inside or outside the
CBLS domain, depending on whether the publication venue of the algorithm covers CBLS or not. Many of the
algorithms published until 2001 were outside the CBLS domain; therefore our use of the algorithms differs from
those in [Alpern:IncEvalOfCompCircuits, 7, 22, 12, 13, 25], with the following notable differences:

e inside the CBLS domain, after the invariant graph has been constructed it is typically not modified, while
outside the CBLS domain, the counterpart of the invariant graph is typically modified between propagations;

o inside the CBLS domain, neighbouring assignments are probed before moving to one of them, while outside
the CBLS domain, there is no notion of probing, as propagation only corresponds to moves; and

e inside the CBLS domain, each variable takes exactly one value, while outside the CBLS domain, there is no
limit to the number of values (often called attributes) a node corresponding to a variable has.
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Analyses of the running time for output-to-input propagation style algorithms were made in [7, 22, 13], but the
former two are only high-level informal analyses and the latter assumes that the nodes of the (invariant) graph
have bounded in-degree and out-degree. In contrast, we lift the latter assumption in Section 3 and make detailed
formal analyses there, of both styles.

Inside the domain of CBLS and for the input-to-output propagation algorithm, considerable work has been
given in [18, 24, 17, 23]. We contribute by giving the proof of when dynamic cycles are allowed (see Lemma 3.1 in
Section 3.4.1) and by extending the reasoning of only the dynamic ELEMENT invariant in [24] to any dynamic
invariant.

Additionally, we contribute by being the first to present the output-to-input and input-to-output styles in
a uniform way (see Algorithms 1 and 2 respectively). We then give proofs of correctness for these algorithms
(see Theorems 3.1 and 3.3 respectively), before computing their time complexities (see Theorems 3.5 and 3.6
respectively) and making an analysis (see Section 3.6) in order to recommend an invariant graph propagation
style based on features of a given invariant graph.

Furthermore, empirical comparison between the performance of invariant graph propagation algorithms has
been anecdotal in [25, 26] or has included additional degrees of freedom, such as selection heuristics, meta-
heuristics, and initialisation heuristics in [20]. We here contribute by empirically measuring only the throughput
(number of probes per second) of the invariant graph propagation algorithms (see Section 4). We assume that
during search, the number of probes is typically one order of magnitude greater than the number of moves.
Therefore, given this assumption, we measure the throughput in probes per second and not in moves per second
(or a combination thereof), as the number of probes per second an invariant graph propagation algorithm can
perform is of utmost importance.

3 Invariant Graph Propagation

Invariant graph propagation is a central concept of a CBLS solver, where an efficient data structure stores the
current values of all variables. There are two main invariant graph propagation styles, here called output-to-input
and input-to-output. The output-to-input style, used by iOpt [26] and Kangaroo [20], is a recursive approach
that starts with the probed variables and ends with the search variables. Conversely, the input-to-output style,
used by Localizer [24], Comet [23], Hexaly [4], InCELL [21], OscaR.cbls [6], Yuck [16], and Athanor [1, 2], is an
iterative approach that starts with the search variables and ends with the probed variables.

We first describe a data structure (Section 3.1) and revisit dynamic cycles (Section 3.2). After the presentation
of the two invariant graph propagation styles and their variations (Sections 3.3 and 3.4), we establish their time
complexities (Section 3.5), and use them to recommend a heuristic for the selection of a propagation style and a
variation (Section 3.6).

3.1 Valuations and Required Input Variables

During local search, the current value of each variable needs to be stored and possibly updated when a neighbour
of the current assignment is probed or moved to. Recall that an assignment (and hence a neighbour) is only on
the search variables.

Definition 3.1 (valuation). Consider an invariant graph with variables V. A valuation is a total function y: V —
Z that maps each variable to an integer value. We denote the value of variable x under valuation y by y[x]. A
local-search solver initialises and iteratively updates a valuation, called the current valuation, which gives the
current value of each variable.

Note that we now use the verb “to update” for a change of a variable within both assignments (see Definitions 2.1
and 2.4) and valuations, but whereas an update in an assignment definitely changes the value, an update in a
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valuation might not actually change the value of the variable, as the new value can coincide with the previous
one.

Consider an invariant graph with probed variables #, a considered neighbour @’ of the current assignment,
and the current valuation y. In order for a selection heuristic to assess each probed variable p € £ under y, the
value y[p] must become the value v, (p). In general:

Definition 3.2 (correct valuation (on a variable set)). Consider an invariant graph with variables V and search
variables S C V, an assignment @ on S, and a valuation y on V. We say that y is correct on a variable subset X € V
with respect to « if y[x] = v (x) for each x € X.If X = V, then we just say that y is correct with respect to a.

In [13, 25, 26, 20], if a variable x is correct with respect to the current assignment, then it is said to be up-to-date,
otherwise x is said to be out-of-date. Note that our notion of a valuation y being correct on variable x with respect
to an assignment is more precise than the notion of x being up-to-date, as correctness is defined given a specific
assignment (typically the current assignment or a neighbour thereof) while being up-to-date is defined without
giving an explicit assignment.

We now extend the CBLS loop condition (Section 2.1) that the value of each variable is determinable under
the current assignment. Consider an invariant graph with variables V' and search variables S C V. Given the
current assignment o on S and the current valuation y on V, the following loop conditions must hold at the start
of each iteration:

LC1 the value of each variable in V is determined under «; and
LC2 y is correct with respect to a.

Additionally, consider the probed variables € V. For a CBLS solver to be correct, the following CBLS solver
conditions are required:

o After the initialisation heuristic has created the initial version of «, the initial version of y must be computed
so that the loop conditions hold for the first iteration.

o Before a neighbour of the current assignment is probed, the loop conditions must hold, hence they are also
loop conditions for the loop over neighbours within an iteration of the solver.

o After a neighbour o’ of the current assignment was probed, the current valuation y must be correct on
with respect to &', as the quality of @’ is assessed by the selection heuristic based on the possibly new
values of the probed variables. We describe at the end of this subsection the data structure for the current
valuation in our implementation, which enables the zero-time undoing of a probe so as to re-establish the
loop conditions for probing the next neighbour. Not requiring y to be correct on all of V with respect to o’
can result in faster invariant graph propagation when probing, as we shall see in Section 3.3.

o After a selected neighbour &’ of the current assignment « is moved to, hence a := o', the loop conditions
must hold for the next iteration of the solver.

Both probing and moving are performed on the current valuation y by what is called invariant graph propagation:
for each invariant, the value y[y] of each output y might have to be updated if the value y[x] of some input x
was updated. If any static input variable to some invariant I was updated, then the output variables of I have to
be updated. However, if some dynamic input variable to some invariant I was updated, then the output variables
of I might not have to be updated. As a motivating example, consider the array X = [xy,..., x,] of variables;
the variables i and y; the ELEMENT(X, i, y) invariant I, which denotes y &= X[i]; and the valuation y. The input
variable i is static and is required for determining the value of y under almost any valuation. However, only
one dynamic input variable, namely X [y[i]], is required under y for determining the value of y under y. We
now define which input variables of an invariant actually need to be watched for detecting the need for such an
update:
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Definition 3.3 (required input variables (under a valuation)). Consider an invariant graph with variables V
and search variables S C V; an assignment @ on S; a valuation y on V that is correct with respect to «; and
an invariant I with input variables X C V, static input variables X; € X, dynamic input variables X3 = X \ X,
and output variables Y C V. A dynamic input variable d € Xy is a required input variable to I under y if there
exists a neighbour assignment o’ and a valuation y’ that is correct on X U Y with respect to &’ where y’ differs
from y only in variable d and at least one output, but not in the other inputs. Recall (from Section 2.7) that each
static input variable is required under almost all assignments « for determining the value v, (y) of each output
variable y. This property transposes to valuations: each static input variable s € X; is a required input variable
to I, irrespective of y.

The designer of a CBLS solver must implement a required-dynamic-input-variables(l, y) function that returns
the required dynamic variables to I under y, with the precondition that y is already correct on the static input
variables to I with respect to the current assignment. For example, consider the array X of variables, the variables i
and y, and a valuation y that is correct on {i}: the call required-dynamic-input-variables(ELEMENT(X, i, y), y)
returns only the variable X[y[i]]. Indeed, each variable x; € X is a dynamic input variable and is furthermore a
required input variable under y if y[i] = j. Note that the correct value y[i] of the static input variable i is thus
needed in order to decide which of the dynamic input variables x; is a required input variable under y, and that
the other dynamic input variables are not required.

Consider a valuation y and an invariant I with input variables X and output variables /. We call the update
of the values of the output variables Y for a subset X’ C X the enforcing of [ under y given X’. If the running
time to enforce I is not in terms of the cardinality of X’, but in terms of the cardinality of X or some other
quantity, then enforcing I at most once per probe or move is preferable to enforcing it multiple times. For example,
consider the set X of variables, the variable y, the static Sum(X, y) invariant [, and the valuation y. An enforcing
of I iterates over all variables in X, updating y[y] to >,cx y[x], which has a time complexity of O(|X]). It is
therefore preferable to enforce I at most once per probe or move, after y has been made correct on all of X, rather
than multiple times.

The enforcing of an invariant I can often be made incremental [24]: it only makes use of each required (static
or dynamic) input variable x to I under the current valuation y where the value of x has been updated under y
since the start of the probe or move. For example, a non-incremental enforcing of a Sum(X, y) invariant was
shown in the previous paragraph; for a neighbour &’ of the current assignment «, the set X’ of updated variables
in X between « and o’, and the valuation y that is correct on X with respect to «’, an incremental enforcing
of SuM(X, y) iterates over only the variables in X’, updating y[y] to v4(y) + X ex: (Y[x] — vo(x)), which has
a time complexity of O(|X’|). In the algorithms we present in Sections 3.3 and 3.4, the subset X’ of updated
variables is always a singleton, as we assume that the enforcing of most invariants is incremental, so that an
invariant being enforced multiple times per probe or move does not cause a performance loss.

In our implementation, each probe and move has a distinct associated positive integer identifier, called
its timestamp because it increases over time in our implementation (even though distinctness would be enough
for our purposes). Our valuation data structure stores the following for each variable x:

e its value under the current assignment, denoted y,[x];
e its current value, denoted y[x] (as prescribed by Definition 3.1 above); and
e the timestamp when it was last updated, denoted y;[x].

Consider a probe or a move with timestamp 7 of a neighbour of the current assignment . When the value of
variable x under y is retrieved: if yi[x] = 7, then y[x] is returned, else y,[x] is returned. When the value of x
under y is updated to v: if it is a probe, then y;[x] = r and y[x] = v, else (it is a move and) y,[x] = v. Since no
operation is needed to undo the possibly multiple updates of the current value of each variable under y after a
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probe was made, the re-establishing of the loop condition LC2 on page 11 (making y correct with respect to «)
takes zero time before the next neighbour is probed, as that condition holds on the y,[x], not on the y[x].
Another implementation of the valuation data structure would be to store the following for each variable:

e its value under the current assignment;
e its current value (as prescribed by Definition 3.1 above); and
e a Boolean that is true if and only if the variable has been updated during the current move or probe.

However, this implementation would take time linear in the number of variables before each move or probe in
order to set each Boolean to false.

3.2 Determinable and Undeterminable Dynamic Cycles

At the end of Section 2.8, we showed that an invariant graph with cycles can be modified into an invariant
graph without cycles, and we stated that dynamic cycles do not have to be handled this way. As a motivating
example for this, consider again the invariant subgraph in Figure 5 an assignment «, and a valuation y that is
correct on {xy, iy, Xz, i } with respect to @, with y[i;] = 1 and y[i] = 2. For the dynamic cycle (y;, L5, yo, 11, y1) the
values v (y;) and v, (y,) are determined, namely v, (x;) and v, (x;) respectively. There may thus be assignments
such that the value of each variable on a dynamic cycle is guaranteed to be determined.

We now introduce the concept of a dynamic cycle being determinable or undeterminable under a valuation:

Definition 3.4 (determinable and undeterminable dynamic cycles under a valuation). Consider an invariant
graph with a dynamic cycle ¢ and consider a valuation y. If there exists at least one variable x in ¢, where x is
both an output variable of a dynamic invariant I and transitively a required dynamic input variable to I under y,
then c is said to be an undeterminable dynamic cycle under y; otherwise c is said to be a determinable dynamic
cycle under y.

In the motivating example above, the dynamic cycle (yi, Iz, y2, 11, y1) is determinable under y since neither y;
nor y, are transitively required dynamic input variables to I; and I, respectively under y. Consider now an
assignment @’ and a valuation y’ that is correct on {xy, iy, X3, i} with respect to a’, with y’[i;] = 2 and y’[i] = 1.
The dynamic cycle (y1, Iz, y2, 11, y1) is undeterminable under y’ since y; is transitively a required dynamic input
variable to I; under y (and the same is true for y, and I,).

Consider an invariant graph with a single dynamic cycle ¢, an assignment «, the array X = [x1,...,x,] of
variables, the variables i and y, the ELEMENT(X, i, y) invariant I, which denotes y <= X[i], as the only dynamic
invariant in ¢, and the valuation y that is correct on {i} with respect to a. Note that since I is in ¢ and y is the
only output variable of I, the edge (I, y) is in c. If ¢ is undeterminable, then output y is transitively a required
dynamic input to I under y, and it is not guaranteed that v,(y) is determined. Otherwise, cycle c is determinable
and v, (y) is guaranteed to be determined.

We now expand on this reasoning. Consider an invariant graph, an assignment «, and the valuation y that is
correct with respect to a. If the invariant graph contains no undeterminable dynamic cycles under y, then the
value of each variable is determined under «, and « satisfies the loop conditions (see Section 3.1) and is therefore
eligible to be moved to.

3.3 Output-to-Input Propagation

Given a neighbour o’ of the current assignment, the propagation of an invariant graph in the output-to-input
style makes the current valuation correct on the probed variables with respect to a’. Hence, this style can only be
used to probe @', but not for moving to &', as the latter requires the current valuation to be made correct (that is
correct with respect to all the variables).
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Fig. 6. An invariant graph with seven variables, {x1, x2, x3,y1,y2, i, p}, three search variables, {x1,x2,x3}, one probed
variable, p, three static invariants, {I1, 13,13}, and one dynamic invariant, I4. The variables that must be marked by a valid
marking strategy are depicted with thick circles. The white nodes are in level 1, and the grey ones in level 2 (see Section 3.4.1).

\d

Output-to-input propagation is called the mark/sweep strategy in iOpt [26] and the mark-sweep approach in
Kangaroo [20]. We decided to call it the output-to-input invariant graph propagation style as the mark/sweep
algorithm [7, 22, 13] is not required for it.

For the move to @', the input-to-output propagation style (see Section 3.4) or a computationally more expensive
output-to-input algorithm (such as the one described in [13] or the one of Kangaroo) can be used.

We first describe how output-to-input propagation is sped up in practice and then explain the output-to-input
propagation algorithm.

3.3.1 Marking. To speed up output-to-input propagation, some variables are typically marked by a marking
strategy [7, 22, 13, 26, 20]. The invariant graph propagation algorithm (in Section 3.3) can only update the values
of marked variables, so the set of marked variables must not be underestimated:

Definition 3.5 (valid marking strategy). Consider an invariant graph with variables V and probed variables  C
V, the set Ip of invariants that have variables of # as outputs, and a neighbour &’ of the current assignment a.
A valid marking strategy marks each variable x that is updated between a and a’ where either x € # or x is
transitively a required (static or dynamic) input variable to an invariant in 7p, under the valuation that is correct
with respect to a’.

Note that this definition mentions the valuation that is correct with respect to @’ and mentions the set of
updated variables (whether search variables or not), but neither is known before propagation. Hence, the set of
marked variables typically contains the actual set of updated variables. If an invariant depends on no updated
search variables, then none of its input and output variables is updated, else its output variables are potentially
updated.

When propagating an invariant graph in the output-to-input style, each non-marked variable is skipped. There
is a running-time gain when skipping variables during propagating, but a running-time cost to perform both the
marking and the check if a variable is marked or not.

For example, consider the invariant graph in Figure 6 (whose grey backgrounds of some nodes will be explained
in Section 3.4.1). Consider a neighbour a” where x; and x5 are the only updated search variables: their dependent
variables y;, i, and p are potentially updated. Using a valid marking strategy, the set of marked variables is at
least {xs, i, p}. However, since the value of i is not known until after propagation, variables x; and y; must also
be marked because i could take the value 1; if i takes the value 2, then the marking of x; and y; was superfluous.

We distinguish three valid marking strategies:

o ad-hoc marking: each variable is marked if it is, or depends on, an updated search variable of the probe;
marking before a propagation takes non-constant time by depth-first search, starting at the updated search
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variables (see Theorem 3.4 in Section 3.5); checking during a propagation if a visited variable is marked
takes constant time;

o prepared marking: each variable x is considered marked if the intersection between the subset S, of the
search variables that x depends on and the set S, of updated search variables of the probe is non-empty;
each set S is computed and stored before search; checking during a propagation if a visited variable is
marked, by checking if the intersection with S, is non-empty, takes non-constant time;

o total marking: each variable is considered marked, hence both marking before a propagation and checking
during a propagation whether a visited variable is marked or not takes zero time. However, as all variables
are considered marked, no variables will be skipped during propagation.

For example, in the invariant graph of Figure 6, the set of marked variables is {x, y1, x3, i, p} under ad-hoc and
prepared marking, and all variables are marked under total marking.

For any invariant graph, the same variables are marked by the first two marking strategies. Their difference is
the trade-off in running time for a particular probe: ad-hoc marking is better for checking if a variable is marked,
while prepared marking is better for marking the variables, amortising its effort of preparing the marking before
search starts. In our experiments (see Section 4) we examine this trade-off, considering that preparation happens
only once but probing extremely often.

3.3.2  Output-to-Input Propagation Algorithm (only for Probing). In output-to-input propagation, the invariant
graph is propagated in depth-first order in the reverse direction of the edges in the invariant graph: each invariant
is enforced after all invariants that have its input variables as outputs have recursively been enforced [13, 25, 26,
20].

Consider an invariant graph with the variables V, search variables S C V', and probed variables # C V.
Consider a neighbour &’ of the current assignment «, and let the current valuation y be correct with respect to .
The procedure of probing &’ in output-to-input style is given in Algorithm 1, where:

o The function update-valuation(y, x, v) sets the value of variable x to v € Z under valuation y, that is: y[x] =
v.

o The function is-marked(y) returns true if variable y is marked by the marking strategy, which we assume
is valid, else returns false. Checking if a variable is marked takes constant time for ad-hoc marking,
non-constant time for prepared marking, and zero time for total marking.

o The function defining-invariant(y) has the precondition y ¢ S and returns the invariant that has output
variable y.

o The function static-input-variables(I) returns the set of static input variables to invariant I.

o The function required-dynamic-input-variables(l, y), already mentioned in Section 3.1, returns the set of
required dynamic input variables to invariant I under valuation y, with the precondition that y is correct
on the static input variables to I.

o The function has-changed(x, y) returns true if the value that variable x took at the start, that is v, (x),
does not equal y[x], else returns false. In our implementation, for a probe with associated timestamp r,
this means that the truth value of y;[x] = 7 A ya[x] # y[x] is returned.

o The function enforce(l, x, y) enforces invariant [ under y given its input variable x.

o The function output-variables(I) returns the set of output variables of invariant I.

First, the current valuation y is made correct on S with respect to «’, lines 2-3. The set ‘W of visited vari-
ables, on which y is correct with respect to @', is then initialised to S, line 4. The set C of variables that are
currently recursed on is initialised to @, line 5. The variables in P are iterated over, lines 6-7, calling the help
procedure output-to-input’ defined in lines 8-23. The latter takes a variable y as input, line 8. If y is currently re-
cursed on, that is another call output-to-input’ (y) is currently being executed, then first output-to-input’(y) and
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Algorithm 1: The propagation of an invariant graph in output-to-input style.

Data: V is the set of variables; S C V is the set of search variables; « is the current assignment; y is the
valuation that is correct with respect to a;  C V is the set of probed variables; o’ is a neighbour
of a.
Precondition: The invariant graph has no static cycles.
Postcondition: If the procedure does not abort, then the valuation y is correct on # with respect to o',
else the invariant graph contains an undeterminable dynamic cycle under y.
procedure output-to-input(a’):

=

2 foreach x € S do

3 L update-valuation(y, x, a’(x))

4 W =8 // data invariant: valuation y is correct on ‘W with respect to o’
5 C=0 // data invariant: output-to-input’ (y) is currently running for ally € C
6 foreach p € P do

7 L output-to-input’ (p)

8 procedure output-to-input’ (y):

9 if y € C then

10 ‘ abort

11 else if is-marked(y) A y ¢ W then

12 C=CuU{y}

13 I := defining-invariant(y)

14 foreach x € static-input-variables(I) do

15 output-to-input’(x) // x € W after recursing
16 if has-changed(x, y) then

17 L enforce(L, x, y)

18 foreach x € required-dynamic-input-variables(l, y) do

19 output-to-input’(x) // x € W after recursing
20 if has-changed(x, y) then

21 L enforce(L, x, y)
22 W = ‘W U output-variables(I)
23 | C=C\{y}

then output-to-input(a’) abort because the invariant graph thus has an undeterminable dynamic cycle under y,
lines 9-10. Else if y is marked and not visited yet, then the procedure continues, else no further operations are
performed, line 11. Variable y is added to the variables that are recursed on currently, line 12. The invariant I that
defines y is retrieved, line 13. The static input variables to I are iterated over, line 14: the help procedure recurses
on each such x, line 15; if the value that x took at the start now does not equal its current value under y, line 16,
then x is used to enforce I, possibly updating the values that the output variables of I take under y, line 17. The
required dynamic input variables to I under y are then iterated over, line 18: the help procedure recurses on each
such x, line 19; if the value that x took at the start now does not equal its current value under y, line 20, then x is
used to enforce I, possibly updating the values that the output variables of I take under y, line 21. Note that the
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two iterations cannot be merged: recall from the example after Definition 3.3 that the values of the static input
variables to a dynamic invariant are needed in order to identify its required dynamic input variables.

Note that I may be enforced multiple times if it has multiple updated input variables. As enforcing an invariant
updates each of its output variables, each output variable of I has now been visited, line 22. Variable y is removed
from the variables that are currently recursed on, line 23.

If Algorithm 1 aborts, then the invariant graph contains an undeterminable dynamic cycle under y and ' is
not fully probed and thus not to be considered for a move.

Note that for the algorithms given in [13, 20], an invariant I, or a node in [13] that here corresponds to an
invariant node, can be lazy, allowing recursion only on a strict subset of the (static and dynamic) input variables
of I. Each dynamic invariant can be implemented as a lazy invariant, but not vice-versa. For example, given
the variable set X and the variable y, the PRopucT(X, y) invariant functionally defines the output variable y
to be the product of the input variables x of X, denoted by y &= [],cx x. When performing propagation in
output-to-input style, if some (static) input variable x in X takes value 0, then the value of each other variable
in X is irrelevant, as the value of y cannot change. Algorithm 1 can be extended to allow for lazy invariants by
stopping iteration prematurely on lines 14-17 and 18-21 if (i) the current defining invariant [ is lazy and (ii) the
value of each output variable of I cannot change given the values of the input variables that have already been
iterated over.

We now prove that Algorithm 1 is correct when it does not abort.

Theorem 3.1 (correctness of Algorithm 1). Consider an invariant graph G with the variables V, search vari-
ables S € V, and probed variables £ C V. Consider a current assignment @, a neighbour &’ of «, and the
valuation y that is correct with respect to a. Assume a valid marking strategy has been used and that the help
procedure output-to-input’ does not abort during the execution of output-to-input(a’). The updated valuation y
upon running output-to-input(a’) is correct on # with respect to o’.

Proor. Given the set Zp of invariants that have the probed variables as outputs, let Rp 2 P be the set of
probed variables and the variables that are transitively required (static or dynamic) input variables to some
invariant in Zp under the valuation that is correct with respect to o’.

We first prove that procedure output-to-input’ has a finite number of executions. We then prove that if
procedure output-to-input’ (y) finishes for some variable y without aborting, then y is correct on {y} with respect
to a. Finally, we prove that if Algorithm 1 finishes without aborting, then the valuation y is correct on P US URp
with respect to @’ and hence correct on £ with respect to o', as required.

Finite number of executions: Up until and including line 4, the valuation y is made correct on S with respect
to a’ and ‘W is initialised to S, so the data invariant of ‘W holds.

For any search variable y € Rp N S, the recursive help procedure output-to-input’(y) will not enter the then
clause at line 11 and will thus perform no more operations (as y is already correct on S with respect to ).

For any non-marked variable y € Ryp, the execution of output-to-input’ (y) will not enter the then clause at
line 11. Since the marking strategy is assumed valid, the valuation y is correct on all non-marked variables with
respect to o’.

Assume that the data invariant of ‘W holds and consider an invariant I, that has an output variable y € Rp,
the static input variables X, and the required dynamic input variables Xy under the valuation that is correct with
respect to a’, where each required (static or dynamic) input variable in X U Xj is either not marked or already
visited (that is W 2 X; U Xj). Since we assume that the data invariant of ‘W holds, the valuation y is correct
on X U Xy with respect to a’. Therefore, the set of required dynamic input variables to I, under y is X4. During
the execution of output-to-input’(y), after recursing on each required (static or dynamic) input variable to I,
both irrespective of y and under y, lines 14-21, the invariant [, has been enforced for each required (static or
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dynamic) input variable x € X5 U Xy, and thus y has been made correct on {y} with respect to a’. After execution
of output-to-input’ (y) finishes, we have y € W.

Consider the current execution of output-to-input’ (y) for y € Rp where y is marked and y ¢ ‘W.If y is already
being recursed on, then y € C and the then clause at line 9 will be entered, which contradicts our assumption. So,
during the execution of any output-to-input’(y), there cannot be any recursive calls to output-to-input’(y). Since
(i) graph G has a finite number of nodes and edges, and since (ii) during the execution of output-to-input’(y)
for any y € Rp, there are no other recursive calls to output-to-input’(y), there is a finite number of calls
to output-to-input’. Thus, procedure output-to-input” has a finite number of executions.

Procedure output-to-input’ finishes without aborting: Consider the marked variable y € Rp \ S that is an
output of invariant I, and consider the execution of output-to-input’(y). When that execution finishes, for each
variable x that is transitively a required (static or dynamic) input variable to I, under the valuation that is correct
with respect to a’ the execution of output-to-input’(x) has also finished.

The execution of output-to-input’(y) for some y € Ry is the first call to output-to-input’ to finish. If y € W
or y is not marked, then y is already correct on {y} with respect to o’. Otherwise, y ¢ S and y is an output of
some invariant I,, each required (static or dynamic) input variable x to I, under the valuation that is correct with
respect to o’ must be either a search variable or not marked. Otherwise, some other invariant I, would have x as
an output and the execution of output-to-input’ (x) would have finished before output-to-input’(y), which is a
contradiction. Therefore, y is correct on each required (static or dynamic) input variable to I, under the valuation
that is correct with respect to «’. Since the data invariant of ‘W holds before the execution of output-to-input’ (y),
after execution of output-to-input’(y) finishes, we have that y is also correct on the output variables of I, with
respect to a’, the set ‘W has each output variable of I, and the data invariant of ‘W holds.

Consider each subsequent finished execution of the procedure output-to-input’(y) for a variable y € $ \ S,
where invariant [, has y as an output and required (static or dynamic) input variables X under the valuation
that is correct with respect to @’. When execution of output-to-input’(y) finishes, for each required (static or
dynamic) input variable x € X, either x € ‘W or x is not marked. Otherwise, x ¢ ‘W and x is marked, thus some
execution of output-to-input’ (x) has not finished, which is a contradiction. So, when output-to-input’(y) finishes,
the valuation y is correct on X with respect to «’. The set W of visited nodes has each search variable and each
variable x € Rp where procedure output-to-input’(x) has finished before output-to-input’(y). The valuation y
is correct with respect to @’ on (i) each variable x € Rp that is not marked, (ii) each variable x € Rp where
procedure output-to-input’ (x) has finished before output-to-input’(y) has finished, and (iii) the search variables.
Therefore, the data invariant of ‘W holds. After execution of output-to-input’ (y) finishes, the valuation y is also
correct on the output variables of I, with respect to a’; the set ‘W of visited nodes has each output variable
of I, as y is correct on each output variable of I,; and the data invariant of ‘W holds. Therefore, given any
variable y € V, if the procedure output-to-input’(y) finishes without aborting, then y is correct on {y} with
respect to a’.

If Algorithm 1 finishes without aborting: Since output-to-input’ is executed iteratively for each probed variable,
after output-to-input(a’) finishes the data invariant of ‘W holds and valuation y is correct on Rp 2 P with
respect to a’. Therefore, if output-to-input” finishes without aborting, then y is correct on P U S U Pg with

respect to o’.
mi
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3.4 Input-to-Output Propagation

Given a neighbour a’ of the current assignment, the propagation of an invariant graph in the input-to-output
style makes the current evaluation correct on all variables with respect to o’. Hence, this style can be used for
both probing ¢’ and moving to «’.

The input-to-output propagation style is called the topological ordering strategy in iOpt [26] and is also used in
Localizer [17], Comet [23], Hexaly [4], and OscaR.cbls [6]. We decided to call it the input-to-output invariant
graph propagation style so as to make its name consistent with our name of the output-to-input propagation
style.

We first show how the variables and invariants of the invariant graph are partitioned into levels before search
starts in order to help detect undeterminable dynamic cycles during invariant graph propagation. We then show
how the variables and invariants in each level are topologically sorted during each probe or move in order both to
actually detect undeterminable dynamic cycles and to make input-to-output propagation more efficient. Finally,
we give an input-to-output propagation algorithm that can perform both probes and moves. The algorithm we
give requires that any undeterminable dynamic cycle is detected during invariant graph propagation. However,
the detection of undeterminable dynamic cycles could theoretically be done using some method besides the
partition and topological sort of the invariant graph.

3.4.1 Partitioning the Invariant Graph into Levels. When an invariant graph is propagated in the input-to-output
style, the nodes of the invariant graph are placed into levels before search starts [17], in order to help detect
undeterminable dynamic cycles during propagation and make the propagation efficient.

Consider an invariant graph G; an assignment «; and a valuation y that is to be made correct on @, where G
contains no static cycles; for each dynamic cycle ¢ in G, each edge in ¢ to a dynamic invariant [ originates from a
dynamic input variable to I; and G is propagated in the input-to-output style. The (dynamic) cycles of G induce
one or more strongly connected components. We partition the nodes of G into levels, such that all nodes of each
strongly connected component are in the same level. For each dynamic invariant I, we place each static input to I
into a shallower level than the level that I is in. When an invariant graph is propagated in the input-to-output
style, we propagate the levels from shallowest to deepest. Therefore, before some level ¢ that contains some
strongly connected component is to be propagated (and after each level shallower than ¢ has been propagated),
for each variable x in a level shallower than ¢ the value y[x] is correct with respect to a. Since each static input
variable to each dynamic invariant I is in a shallower level than I, the required (static and dynamic) input variables
to each invariant in £ under y are known. If the nodes in ¢ and the edges that correspond to the required (static and
dynamic) input variables to the invariants in £ induce one or more cycles, then those cycles are undeterminable
dynamic cycles and @’ cannot be moved to or probed.

Each dynamic invariant I must thus be in a deeper level than each of its static input variables, since the values
of the static input variables are needed to identify the required dynamic input variables of I. Given an invariant
graph, the level of each node is defined by a mathematical constraint, as defined next:

Definition 3.6 (level constraints). The level of an invariant I with the set X; of static input variables and the
set X4 of dynamic input variables is mathematically constrained as follows:

Iv(l) = max({lv(x) | x € Xs}) ifXy=0
max({lv(x) +1 | x € X;} U {lv(x) | x € X3}) otherwise

where the level of a variable x is mathematically constrained as follows:

v(x) lv(I) if x is an output of the invariant I
v(x) =
1 otherwise (and hence x is a search variable)
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The level constraints defined here correspond to the level constraints in [17].

For example, in the invariant graph of Figure 2, all variables and invariants are in level 1, because there are
no dynamic invariants and hence no dynamic input variables, and therefore the deepest level of any node is 1.
Also, in the invariant subgraph of Figure 5, the variables {x1, X3, i1, iz}, coloured white, are in level 1, while the
variables {y1, y»} and dynamic invariants {I;, I}, all coloured grey, are in level 2, because i; and i, are static input
variables to the dynamic invariants I; and I, respectively, with both variables in level 1. Further, in the invariant
graph of Figure 6, the variables and static invariants {x;, x3, x3, I1, I, I3, y1, y2, i}, coloured white, are all in level 1,
while the probed variable p and the dynamic invariant 4, all coloured grey, are in level 2, because the static input
variable i to the dynamic invariant I, is in level 1.

A solution to the level constraints of the nodes induces a partitioning of the invariant graph, as each node is in
exactly one level in any solution.

We now prove a necessary and sufficient condition for the satisfiability of the level constraints:

Lemma 3.1 (satisfiable level constraints). Consider an invariant graph with nodes N. The level constraint of
each node in N is satisfiable if and only if the invariant graph contains no cycle with an edge from a static input
to a dynamic invariant.

Proor. We first prove that if the invariant graph contains a cycle with an edge from an input variable to a
dynamic invariant, then the level constraints are unsatisfiable. We then prove that if the level constraints are
satisfiable, then the invariant graph contains no cycle with an edge from a static input variable to a dynamic
invariant.

Assume that the invariant contains a cycle ¢, with (x,) € ¢, where x is a static input to dynamic invariant I,
we prove that the level constraints are unsatisfiable. Since x and I are in a cycle, variable x depends on I (and vice
versa). Additionally, since the level of each node is at least the level of each node it depends on and the level of x
is greater than I, we have Iv(x) > lv(I) and lv(I) > Iv(x), which is unsatisfiable.

Conversely, assume that the level constraints of the nodes are satisfiable, we prove by contradiction that the
invariant graph contains no cycle with an edge from a static input to a dynamic invariant. For any input x to
invariant I, we have lv(x) < Iv(I), which is satisfiable. If an output variable y of I depends on I, then there exists
some cycle ¢ containing edges (x,I) and (I, y). Additionally, since the level of each node is at least the level of
each node it depends on and the level constraints are satisfiable, Iv(I) < lv(x) is satisfiable. Thus, lv(x) < lv(I)
and Iv(I) < lv(y) are satisfiable, making Iv(x) = lv(I) satisfiable. Therefore, by Definition 3.6, invariant I cannot
be dynamic, as lv(x) > lv(I) is not satisfiable, which is a contradiction.

Thus, the level constraints are satisfiable if and only if the invariant graph contains no cycle with an edge from
a static input variable to a dynamic invariant. O

The levels are static throughout search. Additionally, if an algorithm, such as the one in Section 3.4.3 below,
has the precondition that the level constraints of an invariant graph must be satisfiable, then it by extension has
the precondition that the invariant graph contains no cycle that contains an edge from a static input variable to a
dynamic invariant. This precondition is implicit in Localizer [17], Comet [23], and Oscar.cbls [6], but explicit in
the algorithm in Section 3.4.3 below.

An example of an invariant subgraph that contains an edge from a static input variable to a dynamic invariant
is depicted in Figure 7 (whose grey and white backgrounds of the nodes will be explained later in this section). In
order to partition this subgraph into levels, the dynamic invariant I, must be replaced by its static counterpart:
the variables {x1, x2, x3, i}, coloured white, are then in level 1, while the output variables {y;, y»}, the dynamic
invariant [;, and the now static invariant [, all coloured grey, are then in level 2.

In practice, we have not observed any invariant graph containing a cycle with an edge from a static input
variable to a dynamic invariant. Therefore, we do not know how prevalent such invariant graphs are.
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Fig. 7. A cyclic invariant subgraph with six variables, {x1, x2, X3, i, y1, y2 }; two dynamic invariants, {I,I2}; two static input
variables, {i,y1}, with outgoing solid edges; four dynamic input variables, {x1, X2, X3, y2}, with outgoing dashed edges; and
two output variables, {y1,y2}. The cycle (y1, 12, y2, 11, y1) is dynamic. This is a modified version of the subgraph in Figure 5
where y; has been made a static input variable to Iy, the variable iy has been removed, the variable i; has been renamed
into i, and the variable x3 has been added. The edge (y1,12) in the cycle is from a static input variable to a dynamic invariant.
The white nodes are in level 1, and the grey ones in level 2 (see Section 3.4.1).

Consider an invariant graph with cycles C. In order to make the level constraints satisfiable, for each dynamic
cycle ¢ € C and each edge (x,I) € ¢, where x is a static input variable to the dynamic invariant [, the latter must
be made static by the modeller or solver by replacing it with its static counterpart (see Lemma 3.1 and Section 2.7).

Note that Algorithm 1 of the previous section detects undeterminable dynamic cycles by aborting when
recursing on some variable that is already being recursed on. Thus, Algorithm 1 does not require the invariant
graph to be partitioned into levels and by extension allows the invariant graph to contain cycles with edges from
static input variables to dynamic invariants.

Since we only reason on invariant graphs without cycles that contain an edge from a static input variable to a
dynamic invariant and since each variable is an output of at most one invariant, the following assertions hold:

(i) the level constraints of all nodes of the invariant graph are satisfiable; this follows from the invariant graph

having no cycles that contain an edge from a static input variable to a dynamic invariant;

(ii) the levels partition the nodes of the invariant graph; this follows from (i);

(iii) given any pair of variables x and y, where y depends on x, we have that y is in the same level as x or in a
deeper level than x, thus Iv(y) > lv(x); this follows from (i) and Definition 3.6; and

(iv) given a static input variable x to a dynamic invariant I, we have that [ is in a deeper level than x, thus lv(I) >
lv(x); this also follows from (i) and Definition 3.6.

We now show that every cycle in an invariant graph is local to a single level:

Lemma 3.2 (each cycle is local to a level). All nodes of each cycle in a cyclic invariant graph are in the same
level.

Proor. The level of each invariant I in a graph is at least the level of each node that I depends on. Since each
node in a cycle depends on all other nodes in that cycle and since the level constraints of all nodes are satisfiable
by assertion (i), the levels of all nodes on the cycle are equal. ]

Given assertions (i) to (iv), an invariant graph G can be partitioned into levels such that the level constraint
of each node in G is satisfiable and each node in G only depends on nodes on the same or shallower levels.
Additionally, given Lemma 3.2, each cycle in G is local to a single level. Therefore, each level ¢ in G can be
propagated after each level shallower than ¢ has been propagated, and independently of the propagation of any
level deeper than £.

For each dynamic invariant I, we now show that its set of required dynamic input variables is known before
level lv(I) is propagated, by the exploitation of assertion (iv). Consider an invariant graph with the variables V;
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alevel £ > 1;the set £ = {x | x € V Alv(x) < £} of all variables in levels shallower than #; an assignment «;
the valuation y that is correct on £ with respect to @; and a dynamic invariant I with static input variables X,
dynamic input variables Xj, and level lv(Il) = ¢. Since assertion (iv) implies that the level of each variable in Xj is
shallower than ¢, the valuation y is already correct on Xs C £ with respect to . For any dynamic invariant I, its
set of required dynamic input variables under y is given by the values of the static input variables under y. Thus,
the subset of the required dynamic input variables to I under y is known because X; C L. Since each static input
variable x € Xj is in a shallower level than ¢, the value of x under y will not be updated during propagation of
any level deeper than lv(x), with ¢ > lv(x).

For example, consider the ELEMENT(KX, i, y) invariant I, which is denoted y <= X[i] for the array X =
[x1, ..., x,] of dynamic input variables, the static input variable i, and the output variable y. Since input-to-output
propagation is performed by increasing levels and the levels of both I and y are deeper than the level of the static
input variable i, the current valuation y will be correct on {i} before I is enforced. Therefore, the only required
dynamic input variable to I, namely X [y[i]], is known when I is enforced during propagation of level lv(I).

3.4.2 Topologically Sorting each Level and Detecting Undeterminable Dynamic Cycles. Consider an invariant
graph G with invariants 7 where the level constraints of all nodes are satisfiable, a level ¢, an assignment «, and
the valuation y that is correct on all variables in levels shallower than ¢ with respect to a. For each invariant I, only
the values of the required (static or dynamic) variables under y are needed when I is enforced. Given assertions (i)
to (iv) from Section 3.4.1, Lemma 3.2, and that y is correct on each variable in levels shallower than ¢ with respect
to a, the required (static or dynamic) input variables to each invariant in level £ under y will not change.

Consider also the invariant subgraph G, ,, with the invariants I, = {I | I € I A lv(I) = ¢} and the variables V;,
where each variable x € V;, is either an output variable of an invariant in 7, or a required (static or dynamic)
input variable to an invariant in ;, under y, where G, only contains the edges from each invariant I € 7,
to its output variables and the edges to I from its required (static or dynamic) input variables under y. If G,
is acyclic, then its nodes can be topologically sorted, otherwise G;, contains one or more cycles and its nodes
cannot be topologically sorted.

Therefore, topologically sorting the invariant subgraph G;,, becomes a satisfaction problem, which is satisfiable
if and only if there are no static cycles or undeterminable cycles in level £ under y. Additionally, a solution to the
satisfaction problem induces a topological ordering of the nodes in level ¢.

We now define the mathematical constraints on what we call the topological number of each node in an
invariant graph, before we prove that if an invariant graph contains a static or an undeterminable dynamic cycle,
then the constraints of some nodes are unsatisfiable. Finally, we show that if the topological-number constraints
of the nodes are satisfiable, then they induce a topological ordering of the nodes of the invariant graph.

Definition 3.7 (topological-number constraints). Consider a valuation y. The topological number of an invari-
ant [ with the set X; of static input variables and the set X4, of required dynamic input variables under y is
mathematically constrained as follows:

t,(I) = 1+ max {t,,(x) | x € Xy U Xd,y}

where the topological number of a variable x is mathematically constrained as follows:

b () t,(I) if x is an output of the invariant I
x) =
Y 0 otherwise (and hence x is a search variable)

The topological-number constraints defined here correspond to the topological constraints with respect to a
state in [17].

For example, consider the invariant subgraph in Figure 5 and a valuation y where y[i;] = 1 and y[i;] = 2. The
topological number of the output variable y; under y is t, (y;) = 1+max {t, (i), t,(x1)} = 1+0 = 1, because x; is a
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search variable, and the topological number of the output variable y; under y is t, (y2) = 1+max {ty(ig), ty(yl)} =
1+1 = 2, because t,(y;) = 1. Upon a slight change of the example to y[i;] = 2 and y[i;] = 1, the topological-
number constraints of y; and y, are unsatisfiable, and the subgraph contains the undeterminable dynamic
cycle (y, I, y2, 11, y;) under y.

If a topological-number constraint is unsatisfiable, then the invariant graph contains a static or an undeter-
minable dynamic cycle and the corresponding assignment cannot be moved to, as the value of each variable on
each static or undeterminable cycle is not guaranteed to be determinable.

For any propagation algorithm that requires the topological number constraints of all nodes to be satisfiable,
such as the algorithm in Section 3.4.3 below, the invariant graph cannot contain any static cycles. However,
topologically sorting the nodes of an invariant graph is not required for the detection of static cycles, as static
cycles are independent of assignments and valuations. Since both the static cycles of any invariant graph can be
detected and the invariant graph can be transformed into an invariant graph without static cycles before search
starts (see Section 2.8), we reason on invariant graphs without static cycles for the rest of this section.

If a level only has static invariants, then the topological numbers of the nodes in that level do not depend on
the current valuation, and the level can be topologically sorted once, before propagation starts. Otherwise, the
topological number of each node of that level might change between probes and moves, and the nodes in that
level must be topologically sorted each time before the level is propagated.

We now prove by contradiction that an invariant graph without static cycles has an undeterminable dynamic
cycle within a level if and only if the topological-number constraint of some node in that level is unsatisfiable.

Theorem 3.2 (an undeterminable dynamic cycle implies unsatisfiable topological-number constraints). Consider
an invariant graph G without static cycles; with nodes N, variables V C N, and search variables S C V; the
level £ > 1;the set £ = {u | u € N Alv(u) < ¢} of all nodes in shallower levels than ¢; an assignment «; and
the valuation y that is correct on £ NV with respect to , where the topological-number constraint of each
node u € L is satisfied. The topological-number constraint of each node u € N with Iv(u) = ¢ is satisfiable if,
and only if, level ¢ has no undeterminable dynamic cycles.

Proor. For any invariant I, the level of any variable z that I depends on cannot be greater than lv(I). The set
of transitively required (static or dynamic) input variables to any invariant under any valuation is a subset of the
variables that the invariant depends on.

Assume that G has no undeterminable dynamic cycles under y within level ¢ and that the topological-number
constraint is not satisfiable for some invariant I in level £ with required (static and dynamic) input variables X, =
XU Xy, under y. By definition, the topological-number constraint of I is not satisfiable. If the topological-number
constraints of all variables in X, are satisfiable, then the topological-number constraint of I is satisfiable, which is
a contradiction. Therefore, the topological-number constraint is not satisfiable for some transitively required
(static or dynamic) input variable x € X, to I under y. By definition, variable x cannot be in a deeper level than .
But if lv(x) < ¢, then x € £ and the topological-number constraint of x is satisfiable, which is a contradiction.
Therefore, we have lv(x) = ¢£. Additionally, the level constraint of each search variable is 1, thus x ¢ S. Since
there are a finite number of nodes in level ¢ of G, there exists some transitively required input variabley € V\ S
to I where the following assertions hold:

e y is an output variable of some invariant I;;

. Iv(y) = &

e the topological-number constraints of both y and [, are unsatisfiable; and
e y is transitively a required input variable to .

Since y is transitively a required input variable to I, level £ contains some cycle c. Since G contains no static
cycles, the cycle c is an undeterminable dynamic cycle under y, which is a contradiction.
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Conversely, assume that there is an undeterminable dynamic cycle ¢ under y within level ¢ and that the
topological-number constraint of each node in ¢ is satisfiable. Consider some invariant I in ¢ with some output
variable y. By definition, each node in c is in level ¢ and so is y. Therefore, y is also transitively a required
(static or dynamic) input variable to I. By the topological-number constraints, we must then have that t, (y) is
transitively greater than t, (y), which is a contradiction as the topological-number constraint of y is assumed to
be satisfiable. ]

If a level ¢ contains no undeterminable dynamic cycles under a valuation y, then the topological number
constraints of the nodes in ¢ are satisfiable and induce a topological sort of the nodes in level ¢.

We now show that given an invariant graph without static cycles and a valuation, where the invariant graph
has no undeterminable dynamic cycles under that valuation, enforcing the invariants in order by their topological
numbers will result in the correct valuation.

Theorem 3.3 (enforcing invariants in a level by topological order is correct). Consider an invariant graph G
with nodes N; variables V C N; search variables S C V; alevel ¢; the set £ = {u|u e N Alv(u) < £} of all
nodes in shallower levels than ¢; an assignment a; the valuation y that is correct on S U (L N V) with respect
to a, where G has no dynamic cycles that contain an edge from a static input variable to a dynamic invariant, has
no static cycles, and has no undeterminable dynamic cycles (on any level) under the valuation that is correct with
respect to a. If the invariants in level £ are enforced by increasing topological numbers, then y is made correct on
all variables in level ¢ with respect to .

Proor. Consider the search variables S C V and the invariants 7 = N \ V. Since G contains no dynamic
cycles that contain an edge from a static input variable to a dynamic invariant, the level constraint of each node
is satisfiable. Additionally, for each invariant I € N and each node n that I depends on, we have lv(n) < lv(I).
For each invariant I € N whose topological-number constraint is satisfiable and each node n that is or defines a
variable that transitively is a required (static or dynamic) input variable to I, we have t, (n) < t, ().

We prove that enforcing the invariants in level ¢ by increasing topological numbers makes y correct on all
variables in level ¢ with respect to @. We do this by induction on the topological number for the nodes in ¢: the
base case is for the nodes that have zero as topological number (and thus ¢ = 0), and the inductive case is for the
nodes that have a non-negative topological number (and thus ¢ > 0).

The base case holds as only the search variables S have zero as topological number (and thus ¢ = 0) and y is
assumed correct on S with respect to a.

For the inductive case, assume for some 7 > 0 that all the invariants of the set {JI [TeT Alv([) =¢At, (D) < r}
have been enforced by increasing topological numbers and that y is already correct on all variables in level ¢
that have at most 7 as topological number. We now show that for the case when 7 + 1, after enforcing each
invariant in Zy ;41 = {]I [ TelI Alv() =t At (I) =7+ 1}, the valuation y is correct also on all output variables
of the invariants in 7, ;11 with respect to a.

Consider an invariant I € ;.4 with required (static or dynamic) input variables X, € V under y and output
variables Y C V. Since each required (static or dynamic) input variable x € X, under y is in the same or a
shallower level than I and since t, (x) < t,(I), the valuation y is correct on X} with respect to & by our assumption,
asVx e X :x € LV (Iv(x) = £ At (x) < 7). Enforcing I makes y also correct on Y. Since each output variable is
an output of exactly one invariant and both the level and the topological number of each output variable equal
the level and topological number respectively of the invariant it is an output variable of, after enforcing each
invariant in level ¢ with topological number 7 + 1, the valuation y is also correct with respect to the output
variables of each invariant in level £ with topological number 7 + 1, and our statement holds for 7 + 1. ]

3.4.3 Input-to-Output Propagation Algorithm (for Probing and Moving). Consider an invariant graph with the
variables V and search variables S C V. Consider a neighbour o’ of the current assignment «, and let the
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Algorithm 2: The propagation of an invariant graph in input-to-output style.
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Data: V is the set of variables; S is the set of search variables; « is the current assignment; y is the

valuation that is correct with respect to @; and @’ is a neighbour of a.

Precondition: The invariant graph has no static cycles and no dynamic cycle of the invariant graph

contains an edge from a static input variable to a dynamic invariant.

Postcondition: If the procedure does not abort, then the valuation y is correct with respect to ’, else the

invariant graph contains an undeterminable dynamic cycle under y.

procedure input-to-output(a’):

foreach x € S do
L update-valuation(y, x, a’(x))
fmax = max {lv(x) | x € V}
W = create-array(fpax, @)
/+ data invariant: For each level ¢, the value y[x] of each variable x € “W[f] has been updated
since the start of the execution. */
WI1] = {x | x € S A has-changed(x, y)}
Q := create-priority-queue()
for 1 < £ < £y do
if —assign-topological-numbers(V, ¢,y,t,) then
L abort
foreach x € W|f] do
L enqueue(Q, x, t, (x))
while not empty(Q) do
x = dequeue(Q)
if has-changed(x, y) then
foreach I € listening-invariants(x) do
enforce(l, x, y)
foreach y € output-variables(I) where has-changed(y, y) do
if lv(y) = ¢ Ay ¢ W][{] then
| enqueue(Q,y,ty (1))
Wilv(y)] = Wllv(y)] U {y}

current valuation y be correct with respect to a. The procedure of probing or moving to &’ in input-to-output
style is given in Algorithm 2, with the following additional functions with respect to Algorithm 1:

o the function lv(x) returns the level of variable x € V, assumed computed before search;
e the function create-array(s, v) returns an array of size s € Z*, where indexing starts at 1 and each element

is the value v;

o the function create-priority-queue() returns an empty minimum-priority queue;
e the function assign-topological-numbers(V, £, y, t,) has the preconditions that the valuation y is correct

on S and all variables in levels shallower than #; if level ¢ has no undeterminable dynamic cycles under y,
then the function:
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(1) satisfies the topological-number constraints of the variables in £ under y, and thereby initialises the
topological numbers t, (x) of the variables x in £ if £ = 1, else it updates them, and

(2) returns true;
otherwise ¢ has one or more undeterminable dynamic cycles and false is returned;

o the function enqueue(Q, x, t) adds the variable x with priority ¢ to the minimum-priority queue Q;

o the function empty(Q) returns true if the queue Q is empty, else false;

o the function dequeue(Q) removes a variable x with the lowest priority from the minimum-priority queue Q
and returns x;

o the function listening-invariants(x) returns the set of all invariants to which the variable x is an input
variable.

First, the current valuation y is made correct on S with respect to o', lines 2-3 (just like in Algorithm 1). The
deepest level is found, line 4. The array ‘W of initially empty sets is created, where for level ¢, the value y[x] of
variable x € ‘W [¢] has been updated since the start of the execution and lv(x) = ¢, line 5. Each updated search
variable between « and ' is added to “W[1], line 6, as all search variables are in level 1. The minimum-priority
queue Q that will hold the updated variables in the current level is created empty, line 7. Each level ¢ is iterated
over in an increasing order, line 8. If the topological-number constraints of all variables in level ¢ are satisfiable,
then the topological numbers of those variables are assigned, else the invariant graph contains an undeterminable
dynamic cycle under y and the algorithm aborts, lines 9-10. Each variable of ‘W [?] is enqueued into Q, with its
topological number as priority, lines 11-12. While Q is not empty, line 13, a variable x with the lowest topological
number is dequeued from Q, line 14. If the value that x took at the start of the algorithm is not equal to its current
value under y (in other words, if v, (x) # y[x]), line 15, then each invariant I that x is a required input to under y
is iterated over, line 16. Invariant I is enforced using the updated value of x under y, possibly updating the values
of the output variables of I under y, line 17. Each output variable y of I whose value under y differs from the
value y took at the start of the execution is iterated over, line 18. If y is also in level £ but not in the set ‘W[¢],
line 19, then y is enqueued into Q, with its topological number as priority, line 20. Variable y is added to the
set W(lv(y)], line 21.

After an invariant graph is propagated in input-to-output style, the current valuation y is correct on all variables,
so the values of the probed variables under y can be evaluated by the selection heuristic, and the algorithm can
also be used for moving. Algorithm 2 is a direct implementation of Theorem 3.3 and is thus correct.

3.5 Time Complexity Analysis

We now give the running-time complexities of Algorithms 1 and 2 as well as of the ad-hoc marking strategy.

We say that an edge (x,I) from an input variable x to an invariant I is followed under y when I is enforced
under y given x (i.e., when the call enforce(l, x, y) is made during propagation).

We now show that, for any invariant graph, each search variable that also is a probed variable can be removed
from the invariant graph. Consider an invariant graph with a variable x that is both a search variable and a
probed variable. Since no other probed variable or violation variable depends on x, the value that x takes under
any assignment « does not affect the value that any other variable takes under a. Therefore, we can remove x
from the invariant graph, replacing it with value v. If x is an objective variable, then v is an optimal value of x,
else v is some value of x. For the sequel of this section, we can therefore reason on invariant graphs where the
sets of search variables and probed variables do not intersect, without loss of generality.

Consider an invariant graph G with no static cycle; no dynamic cycle with an edge from a static input to a
dynamic invariant; edges &; nodes N; variables V C N; search variables S C V; probed variables # C (V \ S);

a current assignment «; the current valuation y that is correct with respect to a; a neighbour o’ of «; and the
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valuation y’ that is correct with respect to a’. The above, plus the following notation, are used in all the theorems
below:

e U C V is the set of variables updated between « and o’;

o D 2 U is the set of variables that are, or depend on, a variable in U;

e M D D is the set of marked variables;

e C C N is the set of nodes in levels that contain one or more cycles;

o &p C & is the set of edges that go from a variable in D to some invariant;

o V. C V is the set of variables that are on a level that has one or more cycles;

o &c ={(wv) | (u,0) € EAlv(u) =1Iv(v) A {u,0} N C # @} is the set of edges whose endpoints are on the
same level, which has one or more cycles;

o &sq C & is the set of edges that go from a static input variable in U to some (static or dynamic) invariant;

o &g C & is the set of edges that go from a dynamic input variable in U to some dynamic invariant;

e &, C Eisthe set of edges (x,I) where variable x is a required (static or dynamic) input to invariant I under
valuation y” (for example, in Figure 6, if vy (i) = 1, then &, = {(x1,11), (x2, 1), (33, 13), (1, 1s), (i, 14) },
else vy (i) = 2 and &y = {(x1, 1), (x2,12), (3x3,15), (y2. 1), (i,1a)});

e & M C &y is the set of edges (x,I) where variable x is a required (static or dynamic) input to invariant I
under valuation y’ and I has an output variable in M (for example, in Figure 6, we have &, p1 =
{Ge, 1), (33, 13), (y1, 1), (92, 1), (3, 10) 3)s

® Equry S Eqq is the set of edges (x,I) where variable x € U is updated and a required dynamic input
to invariant I under y’ (for example, in Figure 6, if v/ (i) = 1, then Eqqrry = {(y,14) | y € {y1} N U},
else Vot’(i) =2and 8d,’L{,r,y’ = {(y’ 114) | ye ({yZ} N (Ll)}),

o i is the worst-case time complexity of enqueueing an element into a minimum-priority queue;

e 1 is the worst-case time complexity of marking G;

o ; is the worst-case time complexity of the is-marked function: this is constant time for ad-hoc marking,
non-constant time for prepared marking, and zero time for total marking; and

o ¢ is the worst-case time complexity of the enforce function; the invariants are typically incremental and
the enforce function then typically takes constant time (e.g., this is the case for ALLDIFFERENT and Sum).

Since each invariant has one or more input variables and one or more output variables, we have [N| < 2 - |V|.
Theorem 3.4 (time complexity of ad-hoc marking). The time complexity of ad-hoc marking is O(|Ep|).

Proor. Consider the updated search variable x € S N U between a and ', the set Ny € D that has x and
only the variables that depend on x, and the set &, C &p that connects the nodes in Ny. The sets N and &,
induce an invariant subgraph that is a directed rooted tree with root x. The nodes Ns ¢/ = Uxesnuy/Ny and
edges Es 41 = UxesnuEx, with Eg qf € Ep, induce the invariant subgraph Gs ¢;. If Gs ¢/ is a directed rooted
tree, then |83,«u| = |N5,ru| — 1, else |83,(u| > |N3,(u| — 1. Thus, |83,q1| > |N3;u| — 1, and the time complexity of
depth-first search on G q is O(|85,(u’). Since Es.q1 € Ep, to perform depth-first search on the invariant graph
has the time complexity O(|Ep]). O

Theorem 3.5 (time complexity of output-to-input propagation). The time complexity of Algorithm 1 is:
O (p+ 8y m|+e- (8| +|Eauiny))  ifr=0
O(p+1-|Ecym|+e (|Esuu| +|Eatiry|) otherwise

Proor. To perform marking has time complexity p. For each invariant I that defines a marked output variable
with the set X, of (required) static input variables and the set X4+ of required dynamic input variables under y’,
we have that (i) for each required input variable x € X; U Xy, there is an is-marked operation, which verifies if x
is marked or not, and (ii) for each updated input variable x € (X; N Xq,-) N U there is an enforce operation. For
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all required input variables under y’, this results in at most |8r,yg Ml is-marked operations and at most ‘85,y| +

|8d’ru,r,yr enforce operations. However, since ¢ can be 0, there might be no is-marked operations. Each marked
variable is recursed on at most once. Since a variable is defined by at most one invariant, the number of
invariants that define a marked output variable is at most the number of marked output variables. Additionally,
since S NP = 0, the number of marked search variables is at most the number of invariants that define a marked
variable. Therefore, the number of variables that are recursed on is at most |8r3y/3 M|- The time complexity of
Algorithm 1 is thus as announced. ]

Theorem 3.6 (time complexity of input-to-output propagation). The time complexity of Algorithm 2 is O(x -
1Epl+18c| +ICl + € (|Esu| +|Eai)))-

Proor. Since propagation is performed iteratively similarly to how breadth-first search is performed, only
variables that depend on updated search variables between « and @’ can be enqueued to the minimum-priority
queue. Therefore, there are at most |Ep| enqueue operations and as many dequeue operations.

Since all dynamic cycles of G are determinable under y, topologically sorting each level of the invariant
graph can be done using depth-first search. Additionally, since the levels partition N, the time complexity of
topologically sorting the cyclic levels is O(|E¢| + |C|).

For each updated variable x € U and each invariant that x is an input variable to, there is an enforce operation,
so this results in |853ru| + |8d,’L{| enforce operations.

For each updated search variable x € S N U, there is a constant-time update-valuation operation when y is
initialised, but since S N # = 0 and the number of these operations is at most |Ep|, they are ignored as their
cost is already accounted for by a previous term.

The time complexity of Algorithm 2 is thus as announced. O

3.6 Comparing Running Times and Recommending a Propagation Style

With the use of the notation of Section 3.5 and Theorems 3.4, 3.5, and 3.6, we now compare the running-time
complexities of Algorithms 1 and 2, so as to recommend a propagation style based on features of an invariant
graph.

First, we remove the term e - |85,(u| as it appears in both Theorem 3.5 and Theorem 3.6, resulting in the
comparison of the following complexities, respectively:

(1) 0] ([1 + |8r,y’,M| +e- |8d,"L[,r,y’|) ifi=0
O(u+1-|Eym|+e€[Eaainy|) otherwise
(2) O(x - |Ep| +|Ec| +|C| +€ - [Eau])
We give a recommendation first for the marking strategy, then for the propagation style for invariant graphs
without dynamic invariants, and finally for the propagation style for invariant graphs with dynamic invariants.

3.6.1 Recommendation for the Marking Strategy. The choice of prepared, ad-hoc, or total marking has an impact
on the performance of Algorithm 1, as the marking strategy affects the time complexities p and ¢ and potentially
reduces the size of the set M of marked variables and by extension the size of the set &,/ m:

o if total marking is used, then =0, 1 =0, and Sr,ng C &y

e if ad-hoc marking is used, then y = O(|D|), 1 = O(1), and &y pm € &, where for each edge (x,1) €
&Ery M, invariant [ depends on an updated search variable; and

e if prepared marking is used, then y = 0,1 = O(|S N U|), and E» m S &y Where for each edge (x,1) €
&y, M, invariant I depends on an updated search variable and for some output y of I
- y is a probed variable, or
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— y is transitively is a required (static or dynamic) input to some invariant I’ under valuation y’, where I’
defines a probed variable.

Therefore, if |S N U| - ’8,,,,;, M| is smaller than |8r,yf ’, then prepared marking has better performance than ad-hoc
marking. Analogously, if |Ep| + |8r,),/, M| is smaller than |8r,yl ’ then ad-hoc marking has better performance than
prepared marking.

3.6.2 Recommendation for Invariant Graphs Without Dynamic Invariants. For any invariant graph without
dynamic invariants (and therefore without dynamic cycles), the respective complexity is simplified further into:

(1) {O (1 + ‘Sr,y’,MD if1=0
O(p+r- |8r,ng|) otherwise
(2) O(x - &0l
Since &)/ pm contains each edge to an invariant from each of its input variables (as there are no dynamic
invariants), we have &9 C &/ m. If Ep is smaller than &, o by at least one order of magnitude, then we
recommend the usage of the input-to-output style (Algorithm 2). Otherwise, since the opposite cannot be true,
the recommended propagation style depends on k and the marking strategy.

3.6.3 Recommendation for Invariant Graphs with Dynamic Invariants. As |8r,y»| and (by extension) |8r,y/, M| depend
on the number of edges that originate from static input variables, we recommend the input-to-output invariant
graph propagation style (Algorithm 2) for an invariant graph where the number of such edges is greater than
the number of edges from dynamic input variables to dynamic invariants by at least one order of magnitude.
However, if, despite a recommendation to the contrary, output-to-input propagation (Algorithm 1) is used, then
we recommend the ad-hoc marking strategy for such an invariant graph.

Analogously, as |8d,'L{| depends on the number of edges that originate from dynamic input variables and as C
and &¢ are only non-empty when the invariant graph has dynamic invariants, we recommend the output-to-input
invariant graph propagation style (Algorithm 1) for an invariant graph where the number of such edges is greater
than the number of edges from static input variables to invariants by at least one order of magnitude, or the
number of dynamic invariants is greater than the number of static invariants by at least one order of magnitude,
or both.

Additionally, if neither iSr’y/| nor |8d,11| is greater than the other by at least one order of magnitude, then the
recommended propagation style depends on x and the marking strategy.

4 Experiments

We developed a CBLS solver, called Atlantis, that can propagate an invariant graph in both input-to-output and
output-to-input styles.! For the output-to-input style, the solver supports the total, ad-hoc, and prepared marking
strategies.

Given parameter values, an invariant graph model is a description of how an invariant graph is created. We
designed six invariant graph models, for four classical problems — Golomb ruler [10, problem 6], magic square [10,
problem 19], the travelling salesperson problem with time windows [3], and vessel loading [10, problem 8] —
plus two handmade ones, called extreme dynamic and extreme static. A property of the set of designed invariant
graph models is that they give a varied ratio between the number of edges from static input variables to (static or
dynamic) invariants and the number of edges from dynamic input variables to dynamic invariants. Note that
any set of invariant graph models with this property could have been designed, as we are only interested in the
throughput of the propagation algorithms and not in the actual underlying problems or the time to solve their

The source code of Atlantis is publicly available at https://github.com/astra-uu-se/atlantis/
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instances. However, we selected some classical problems as they are well-known and some of them have real-life
applications.

In the following subsections, we first describe the four classical problems and our designed invariant graph
models for them (creating graphs that one would like a CBLS solver, such as fzn-oscar-cbls [5] or Yuck [16], to
infer from a MiniZinc model), before we describe our handmade invariant graph models, detail our experiment
method, and give the experiment results.

Note that we will always give an upper bound on the number of edges followed when the output-to-input
propagation style is used. For example, if the value of a visited output variable of some invariant I has not been
updated between the current assignment and the (probed) neighbouring assignment, then no edge to I is followed.

4.1 Golomb Ruler (GR)

A Golomb ruler of size n is a set of n strictly increasing non-negative integers whose = (n=1)

2

pairwise absolute-value
differences are distinct.

Our invariant graph model for a Golomb ruler of size n creates an invariant graph with the array S = [x3, ..., x,]
of n search variables, where x; denotes the ith integer of the Golomb ruler; the set Y of @ variables y; j;
the static invariant y; ; <= x; — x; for each pair (x;, x;) € S? with i < j; the probed violation variable v; and
the static violation invariant ALLDIFFERENT(Y,v). An implicit constraint maintains the values of the search
variables x; to be non-negative and strictly increasing (so that the value of y; ; can be determined without the use
of an absolute-value operator): after such an initialisation, a probe consists of updating one search variable such
that this remains the case.

The number of edges in the invariant graph between invariants and their static input variables is w The
invariant graph has no dynamic invariants and no cycles. The number of marked variables for any probe with
ad-hoc marking is n. Since the value of a single search variable x; is updated at each iteration, since there are n —1

variables in Y that depend on x;, and since each variable in Y is an input to the ALLDIFFERENT invariant, up

to (n+2)-(n—1)

5 edges are followed when the output-to-input propagation style is used.

4.2 Magic Square (MS)

A magic square of size n is an n X n matrix of distinct values in {1,...,n?} so that the 2 - n + 2 sums of its rows,
columns, and two main diagonals are all equal to s = %

Our invariant graph model for a magic square of size n creates an invariant graph with n? search variables,
where x, . denotes the element in row r and column c of the magic square; the static Sum invariant with output
variable y; for each row, column, and main diagonal k; the static violation invariant vy <= |yx — s| for each
row, column, and main diagonal k determining the value of the violation variable vy € V as the distance of k
to the desired sum s; and the static invariant Sum(V, v) determining the value of the probed total-violation
variable v. An implicit constraint maintains the n? search variables x . to be in {1, el nz} and distinct: after
such an initialisation, a probe consists of swapping two search variables.

The number of edges in the invariant graph between invariants and their static input variables is 2+ n +4-n+2.
The invariant graph has no dynamic invariants and no cycles. The number of marked variables for any probe that
switches the values of variables x; and x; with ad-hoc marking is 4 + 1, as it depends on whether x;, or x;, or both
are on the main diagonals. When the output-to-input propagation style is used, up to 8 - n + 2 edges are followed.

4.3 Travelling Salesperson Problem with Time Windows (TSPTW)

Consider n locations that are to be visited, where there is a travelling duration p, , between each directed
pair (u,v) of locations and there is for each location u an earliest visiting time e, and a latest visiting time £,. A
travelling salesperson tour with time windows (TSPTW) of size n is a Hamiltonian path of the weighted directed
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graph induced by the n locations as nodes, visiting each location u exactly once and between times e, and ¢,.
The departure time at the last-visited location is to be minimised.

Our invariant graph model for a TSPTW of size n creates an invariant graph with the array S = [x, ..., xp41]
of n+1 search variables, one for each location plus one for a dummy location n + 1, where x,, denotes the possibly
dummy location that is visited just before location u, and x,; thus denotes the last actual location of the tour. The
additional variable x,;; and the dummy location n + 1 are needed for transforming the tour from a Hamiltonian
path into a Hamiltonian cycle, for helping to express constraints from the problem in the model, and for denoting
where the tour starts and ends. For each location 1 < u < n, the invariant graph model creates:

o the variable ¢, that denotes the travelling duration from location x,, to location u;

e the variable a, that denotes the arrival time at location u;

o the variable d,, that denotes the departure time from location u; it differs from a,, if the salesperson arrives
at u before e, and has to wait there until e, before departing;

o the variable d], that denotes the departure time from location x,;

o the violation variable v, that denotes the lateness (possibly zero) of arrival at location u compared to £;

the static ELEMENT invariant t, <= [y, .. ., nu, 0] [xy,] that defines t,; note that the invariant is static as

each y;,, is a parameter;

the static invariant d, <= max(a,, e,) that defines d;

the dynamic ELEMENT invariant d|, &= [dy, ..., dn+1][xy] that defines d;

the static invariant a,, <= d;, + t, that defines a,; and

the static violation invariant v, < max(0, a, — ¢,) that defines v,,.

The invariant graph model creates the additional parameters t,+; = dy4+1 = 0 for the dummy location. Additionally,

the invariant graph model creates the dynamic ELEMENT invariant 0 <= [dj, ..., dp, 0] [x,+1] that defines the
probed objective variable o, which denotes the departure time from the last location of the tour (which is the
arrival time at the dummy location), as well as the static invariant Sum({os, ..., v, },0) that defines the probed

total-violation variable v. An implicit constraint maintains that we always have a Hamiltonian cycle during
search: after such an initialisation, a probe is the execution of a 3-opt [15] on the vector of search variables.

The number of edges in the invariant graph between invariants and their static input variables is 4 - n. The
number of edges between invariants and their dynamic input variables is n”. The invariant graph has one cycle,
with variables U"_, {a,,dy,d],} and the invariants that define them. The number of marked variables for any
probe with ad-hoc marking is 3 - n 4+ 5. When the output-to-input propagation style is used, up to 4 - n + 5 edges
are followed.

4.4 Vessel Loading (VL)

Consider n rectangles, where each rectangle i has integer length ¢; (along the horizontal x axis) and width w;
(along the vertical y axis). A vessel loading of size n is a placement of the n rectangles within a single plane of a
given rectangular bounding area of length A and width ¢, whose origin is in its lower-left corner, such that each
rectangle is parallel to the sides of that area. Additionally, each pair of rectangles (i, j) must be separated by a
safety distance s; ; from each other, where s; ; = s;; is a nonnegative integer.

Our invariant graph model for a vessel loading of size n creates an invariant graph with the set {o,...,0,}
of search variables, where o; is 1 if rectangle i has its given orientation, else 2 and i is rotated by 90 degrees;
the set {x1,...,x,} of search variables, where x; denotes the left-most position of rectangle i and takes a value
in{0,...,A —min(&, w;)}; and the set {yy, ..., y, } of search variables, where y; denotes the bottom-most position
of rectangle i and takes a value in {0, ..., — min(#, w;)}. For each rectangle 1 < i < n, the invariant graph
model creates:
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e the dynamic ELEMENT invariant x; &= [x; + £, x; + w;][0;] that defines x| as the right-most position of
rectangle i; and

¢ the dynamic ELEMENT invariant y; <= [y; + w;, y; + £;][0;] that defines y; as the top-most position of
rectangle i.

For each pair of rectangles (i, j) with 1 < i < j < n, the invariant graph model creates the static invariant c; =
max (0, x; +s;,; — x;) so that ¢} ;is0 if j is a safe distance right of i, and the required additional distance needed to
safely separate them otherwise. Similarly, the invariant graph model creates three static invariants that define the
variables c}.’ i » and c'Z ; for rectangle j being a safe distance left of, above, and below rectangle i respectively.
Finally, the invariant graph model creates the static violation invariant v; ; <= min(ci P cl.’ P c?)j, cEj) that defines
violation variable v; ; € V to be 0 if rectangles i and j are separated by their safety distance, and the minimum
additional required (horizontal or vertical) distance needed to safely separate them otherwise. The invariant
graph model creates the static invariant Sum(V, v) that defines the probed total-violation variable v. An implicit
constraint maintains that each rectangle is placed within the bounding area: after such an initialisation, a probe
consists of updating one or more of the variables o;, x;, and y; for some rectangle i so that it remains within the
bounding area.

The number of edges in the invariant graph between invariants and their static input variables is
The number of edges between invariants and their dynamic input variables is 2 - n. The invariant graph has no

cycles. The number of marked variables for any probe with ad-hoc marking is 5 - n — 1. When the output-to-input
n-(n+7)
2

9-n*—5-n

propagation style is used, up to edges are followed.

4.5 Extreme Dynamic (ED)

Our extreme dynamic invariant graph model for size n creates an invariant graph with the array X = [xy, ..., x,]
of n search variables and the array Y = [y, ..., y,| of n variables; the search variable i; the probed variable o;
the set of dynamic ELEMENT invariants y; <= [xi,...,x,][i]; and the dynamic ELEMENT invariant o <=
[y1, ..., yn] [i]. Note that there are no violation variables and no violation invariants. A probe consists of updating
some search variable x;, which is a dynamic input variable. We opted not to allow probes where i is updated, as
the cost of such a probe might be different from a probe where some search variable x; is updated.

The acyclic invariant graph is in Figure 8. The number of edges between invariants and their static input
variables is n + 1. The number of edges between invariants and their dynamic input variables is n? + n. The
number of marked variables for any probe with ad-hoc marking is n + 1. When the output-to-input propagation
style is used, up to 4 edges are followed.

We designed this invariant graph model so that the number of edges from dynamic input variables to dynamic
invariants is quadratic in n, while the number of edges from static input variables to invariants is only linear in n.
Additionally, the number of edges that are followed during propagation is linear in n for input-to-output style,
but constant in output-to-input style.

4.6 Extreme Static (ES)

Our extreme dynamic invariant graph model for size n creates an invariant graph with the array X = [xy, ..., x,]
of n search variables and the static invariant Sum(X, s) that defines the probed variable s to be their sum. Note
that there are no violation variables and no violation invariants. A probe consists of updating some search
variable x;.

The number of edges in the invariant graph between invariants and their static inputs is n. There are no dynamic
invariants. The number of marked variables for any probe with ad-hoc marking is 2. When the output-to-input
propagation style is used, up to n + 1 edges are followed.
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Fig. 8. Invariant graph for an ED of size n, where each invariant Ij is ELEMENT([x1, ..., Xp], i, ;). Each dashed edge (z,I)
goes from the dynamic input variable z to the dynamic invariant L. Each solid edge (z,I) goes from the static input variable z
to the invariant I. The white nodes are in level 1, the light grey ones in level 2, and the dark grey ones in level 3.

We designed this invariant graph model so that the invariant graph has a single static invariant, no dynamic
invariants, no dynamic inputs, and a number of edges from static input variables to invariants that is linear in n.
Additionally, the number of edges that are followed during propagation is constant for input-to-output style, but
linear in n for output-to-input style.

4.7 Method

Solving to satisfaction or optimality depends on the initialisation, neighbours, selection heuristic, and meta-
heuristic, as well as on luck each time randomisation is performed, but all this is orthogonal to our purpose,
namely measuring the throughput, that is the number of probes per second, of the invariant graph propagation
styles, in order to compare them. So we need neither record the time taken to find solutions nor compare
best-found objective values, and this neither between invariant graph propagation styles nor with the state of the
art for each of the first four invariant graph models. Additionally, given a created invariant graph for particular
parameter values, an invariant graph propagation style, and a valid marking strategy, roughly the same number
of computations is performed per iteration whether the instance is easily satisfied, difficult to satisfy, or infeasible.
The difficulty and realism of the problem instances are thus unimportant, so we generated random parameter
values instead of retrieving instances from existing repositories. Furthermore, during search, we assume that the
number of probes is typically one order of magnitude greater than the number of moves: the number of probes
an invariant graph propagation algorithm can perform per second is thus of utmost importance.

For each invariant graph model, we generated 9 instances, of sizes 16, 32, 64, 96, 128, 196, 256, 512, and 1024. The
throughput is measured for each instance when the input-to-output propagation style (denoted “input-to-output”),
output-to-input propagation style with ad-hoc marking (denoted “output-to-input — ad-hoc”), output-to-input
propagation style with prepared marking (denoted “output-to-input — prepared”), and output-to-input propagation
style with total marking (denoted “output-to-input — total”) are used.
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Fig. 9. The number of probes per second for various invariant graphs with input-to-output and output-to-input propagation,
where output-to-input propagation uses either ad-hoc marking, or prepared marking, or total marking. The horizontal axis of
each graph corresponds to the size of the invariant graph model. Note that solving to satisfaction or optimality is orthogonal
to our purpose.

4.8 Results

We ran our experiments on a desktop computer with an ASUS PRIME Z590-P motherboard, a 3.5 GHz Intel Core
19 11900K processor, and four 16 GB 3200 MT/s DDR4 memories, running Ubuntu 22.04.4 LTS with GCC (the
GNU Compiler Collection) 11.
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The results are shown in Figure 9.2 For each invariant graph where the number of edges from static input
variables to invariants is greater than the number of edges from dynamic input variables to dynamic invariants
by at least one order of magnitude (namely GR, MS, VL, and ES), input-to-output propagation outperforms
output-to-input propagation. Conversely, for the invariant graphs where the number of edges from dynamic input
variables to dynamic invariants is greater than the number of edges from static input variables to invariants by at
least one order of magnitude, output-to-input propagation outperforms input-to-output propagation (TSPTW
and ED) for total and prepared marking. For ad-hoc marking, output-to-input propagation also outperforms
input-to-output propagation on TSPTW and ED. For output-to-input propagation, on the invariant graph models
where input-to-output propagation outperforms output-to-input propagation (namely GR, MS, VL, and ES),
ad-hoc marking outperforms prepared marking, which outperforms total marking. Conversely, for the invariant
graph models where output-to-input propagation outperforms input-to-output propagation (namely TSPTW and
ED), both prepared and total marking outperform ad-hoc marking, where total marking slightly outperforms
prepared marking on TSPTW, and total marking and prepared marking have similar performance on ED. These
results support our recommendations in Section 3.6 based on Theorems 3.4, 3.5, and 3.6.

5 Conclusion and Future Work

We have detailed and theoretically compared two invariant graph propagation styles, namely input-to-output and
output-to-input, and three marking strategies for the latter, namely ad-hoc, prepared, and total. We have presented
algorithms for these invariant graph propagation styles, high-level descriptions for these marking strategies,
theorems on the time complexities of these algorithms and marking strategies, as well as a recommendation based
on those time complexities. Our experiments support that recommendation. There are additional experiments in
Appendix A that support that recommendation.

Our current work is the design and implementation of our CBLS solver Atlantis, which supports all propagation
styles mentioned here. For future work, we intend to make Atlantis a backend to MiniZinc, in order to run
experiments using MiniZinc models.

Note that for Algorithm 1 and in our experiments, when the output-to-input propagation style is used, the
values of all probed variables are determined, while only the values of a chosen subset of (possibly non-probed)
variables are determined in [13]. For example, consider an invariant graph with multiple probed variables, of
which a subset can be chosen. The output-to-input propagation style can be extended by only determining
the value of each variable that transitively is a required (static or dynamic) input variable to a chosen variable,
skipping all other variables and potentially improving performance. For future work, we intend to implement a
selection heuristic that exploits this in our Atlantis solver.
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A Additional Experiments

We experiment with four additional invariant graph models that we designed for two classical problems -
the travelling salesperson problem [8] and again the travelling salesperson problem with time windows (see
Section 4.3) — plus two handmade ones, called sum tree and element tree. We use the same method as in
Sections 4.7.

Al

Travelling Salesperson Problem (TSP)

Consider n locations that are to be visited, where there is a travelling duration y, , between each directed
pair (u,0) of locations. A travelling salesperson tour (TSP) of size n is a Hamiltonian cycle of the weighted directed
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graph induced by the n locations as nodes, visiting each location exactly once. The total travelling duration of
the tour is to be minimised.

Our invariant graph model for a TSP of size n creates an invariant graph with the array S = [xy,...,x,] of n
search variables, one for each location where x, denotes the location that is visited just before location u. For each
location 1 < u < n, the invariant graph model creates the variable ¢, that denotes the travelling duration from
location x;, to location u and the static ELEMENT invariant t,, <= [pi1.4, - . -, finu] [%4] that defines t,; note that
the invariant is static as each pi;,, is a parameter. Additionally, the invariant graph model creates the static Sum
invariant o &= } I, t; that defines the probed objective variable o, which denotes the total travelling duration of
the tour. As for TSPTW (see Section 4.3), an implicit constraint maintains that we always have a Hamiltonian
cycle during search; after such an initialisation, a probe is the execution of a 3-opt [15] on the vector of search
variables.

The number of edges in the invariant graph between invariants and their static input variables is 2 - n. There
are no dynamic invariants. The number of marked variables for any probe with ad-hoc marking is 7. When the
output-to-input propagation style is used, up to 2 - n edges are followed.

A.2  Travelling Salesperson Problem with Time Windows, revisited (TSPTW)

We design another invariant graph model for the TSPTW problem of Section 4.3. Our TSPTWS invariant graph
model for a TSPTW of size n creates an invariant graph with the array S = [xy, ..., x,] of n search variables, one
for each location, where x,, denotes the u® location that is visited in the tour. For each index 1 < i < n in the
sequence, the invariant graph model creates:

the variable e] that denotes the earliest visiting time of location x;;

the variable £/ that denotes the latest visiting time of location x;;

the variable d; that denotes the departure time from location x;;

the static ELEMENT invariant e; <= [ej,..., e,][x;] that defines e/; note that the invariant is static as
each e; is a parameter; and

o the static ELEMENT invariant £/ <= [#y,..., ;] [x;] that defines ¢; note that the invariant is static as each ¢;
is a parameter.

For the first visited location, we have d; = e]. For each index 2 < i < n in the sequence, the invariant graph
model creates:

o the variable ¢; that denotes the travelling duration from location x;_; to location x;;

e the static ELEMENT invariant t; <= [[,ul,l, cestinls oo [Hns - - .,,un,n]] [xi—1][x;] that defines t; and takes
a two-dimensional matrix of parameters and two static variables as inputs; note that the invariant is static
as each y; i is a parameter;

the variable a; that denotes the arrival time at location x;;

the static Sum invariant a; < d;_; + t; that defines a;;

the static invariant d; <= max(a;, ;) that defines the remaining d;;

the violation variable v; that denotes the lateness (possibly zero) of arrival at location x; compared to £/;
and

o the static violation invariant v; <= max(0, a; — £;) that defines v;.

Note that for each 2 < i < n, the variable d; depends on g;, which in turn depends on d;_;, with d; = e].
Additionally, the invariant graph model creates the static invariant Sum({v,, . ..,v,},v) that defines the probed
total-violation variable v. The probed objective variable, which denotes the departure time from the last location
of the tour, is d,. An implicit constraint maintains the n search variables to be in {1,...,n} and take distinct
values: after such an initialisation, a probe consists of swapping two search variables.
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The number of edges in the invariant graph between invariants and their static input variables is 11 - n — 9.
There are no dynamic invariants. The number of marked variables for any probe with ad-hoc marking is 15.
When the output-to-input propagation style is used, up to 11 - n — 9 edges are followed.

A.3  Sum Tree (ST)

Our Sum Tree invariant graph model for size n creates an acyclic invariant graph with:

o the sets Xj, X5, X4, Xs, and Xz of n* variables, n® variables, n? variables, n variables, and 1 variable
respectively, with x; € X;; and

o the sets I3, I3, I5, and I; of n? invariants, n? invariants, n invariants, and 1 invariant respectively, where
each invariant I, in 7; is a static Sum invariant that takes its unique n input variables from X;_; and
defines one output variable in Xj;.

The search variables are X and the only probed variable is x5 ;. The resulting acyclic invariant graph for size n = 2
is in Figure 10. We initialise the value of each variable in X; to a random value. A probe consists of randomly
updating some search variable in Xj.

The number of edges between invariants and their static input variables is n* + n* + n? + n. The number of
marked variables for any probe with ad-hoc marking is 5. When the output-to-input propagation style is used,
up to n* + n® + n? + n edges are followed.

We designed this invariant graph model so that the probed variable is transitively defined by a number of
static invariants that increases polynomially in n. Additionally, the number of edges that are followed during
propagation is constant for input-to-output style, but polynomial in n for output-to-input style.

A.4  Element Tree (ET)

Our Element Tree invariant graph model for size n creates an acyclic invariant graph with:

o the array Xj of n search variables xq ;
o the sets Xy, Xy, X¢, and Xs of n? variables, n® variables, n variables, and 1 variable respectively, with x; . € Xj;
o the sets Y, Vs, Yi, and Y; of n® search variables, n? search variables, n search variables, and 1 search
variable respectively; and
o the sets 17, I3, I5, and I; of n® invariants, n? invariants, n invariants, and 1 invariant respectively, where
each invariant I; ¢ in 7; is a dynamic ELEMENT invariant, where:
— it takes its unique static input variable from Y;_;
— if j = 1, then it takes Xj as its dynamic input variables, otherwise it takes its unique n dynamic input
variables from X;_;; and
- it defines one output variable in Xj;.

The only probed variable is xg ;. The resulting acyclic invariant graph for size n = 2 is in Figure 11. We initialise
the values of the variables in Y; with j € {0,2,4,6} such that each variable in X; transitively is a required
dynamic input variable under the corresponding valuation to the invariant that defines x5 ;. A probe consists of
updating some search variable in Xp, which is a dynamic input variable. We opted not to allow probes where any
variable in Y; with j € {0, 2,4, 6} is updated, as the cost of such a probe might be different from a probe where
some search variable in X is updated.

The number of edges between invariants and their static input variables is n® + n? + n + 1. The number of edges
between invariants and their dynamic input variables is n* + n + n? + n. The number of marked variables for any
probe with ad-hoc marking is n® + n? + n + 2. When the output-to-input propagation style is used, up to 8 edges
are followed.
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Fig. 10. Invariant graph for a sum tree of size n = 2, where each invariant I ; is a static Sum invariant. Each solid edge goes
from a static input variable to an invariant (which is static in the case of this figure).
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We designed this invariant graph model so that the probed variable is transitively defined by a number of
dynamic invariants that increases polynomially in n. Additionally, the number of edges that are followed during
propagation is constant for output-to-input style, but polynomial in n for output-to-input style.
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Fig. 11. Invariant graph for an element tree of size n = 2, where each I 1 is a dynamic ELEMENT invariant. Each dashed edge
goes from a dynamic input variable to a dynamic invariant. Each solid edge goes from a static input variable to an invariant
(which is dynamic in the case of this figure).

A.5 Results

We ran our experiments on a desktop computer with an ASUS PRIME Z590-P motherboard, a 3.5 GHz Intel Core
19 11900K processor, and four 16 GB 3200 MT/s DDR4 memories, running Ubuntu 22.04.4 LTS with GCC (the
GNU Compiler Collection) 11.

The results are shown in Figure 12. For each invariant graph where the number of edges from static input
variables to invariants is greater than the number of edges from dynamic input variables to dynamic invariants
by at least one order of magnitude (namely TSP, TSPTWS, and ST), input-to-output propagation outperforms
output-to-input propagation. Conversely, for the invariant graph where the number of edges from dynamic input
variables to dynamic invariants is greater than the number of edges from static input variables to invariants by at
least one order of magnitude (namely ET), output-to-input propagation outperforms input-to-output propagation
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Fig. 12. The number of probes per second for various invariant graphs with input-to-output and output-to-input propagation,
where output-to-input propagation uses either ad-hoc marking, or prepared marking, or total marking. The horizontal axis of
each graph corresponds to the size of the invariant graph model. Note that solving to satisfaction or optimality is orthogonal
to our purpose.

for total and prepared marking. For ad-hoc marking, output-to-input propagation has slightly better performance
than input-to-output propagation on ET when the number of dynamic input variables to each invariant is at least 6
corresponding to n > 6 in Section A.4, but has worse performance for n < 6. For invariant graph models where
input-to-output propagation outperforms output-to-input propagation (namely TSP, TSPTWS, and ST): ad-hoc
marking outperforms prepared marking and total marking on TSP, which have similar performance; total marking
outperforms ad-hoc marking, which outperforms prepared marking, on TSPTWS; and ad-hoc and prepared
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marking have similar performance on ST, and both outperform total marking. For output-to-input propagation,
on the invariant graph model where output-to-input propagation outperforms input-to-output propagation
(namely ET), total marking has slightly better performance than prepared marking, which outperforms ad-hoc
marking. These results support our recommendations in Section 3.6 based on Theorems 3.4, 3.5, and 3.6.
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